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Abstract

Sim-to-real transfer and personalization remains a core
challenge in Embodied AI due to a trade-off between syn-
thetic environments lacking realism and costly real-world
captures. We present EmbodiedSplat, a method that person-
alizes policy training by reconstructing deployment envi-
ronments using a mobile device and 3D Gaussian Splatting,
enabling efficient fine-tuning in realistic scenes via Habitat-
Sim. Our analysis of training strategies and reconstruction
techniques shows that EmbodiedSplat achieves significant
gains—improving real-world ImageNav success by 20–40%
over pre-trained policies in an out-of-domain scene—and
exhibits strong sim-to-real correlation (0.87–0.97). Code
and data will be made public.

1. Introduction
Recent advances in Embodied AI have shown strong per-
formance in simulation [7, 8, 15, 22, 23], but sim-to-real
transfer remains a major challenge due to limited simulation
fidelity and accessibility [10]. Synthetic environments like
HSSD [12] often lack real-world complexity, while datasets
such as Matterport3D [3] and HM3D [19] rely on expensive
hardware and labor-intensive pipelines, limiting scalability
and adaptation to diverse deployment settings.

To address this, we propose a framework that leverages
open-source 3D Gaussian Splatting [11] (compared with
Polycam [17]) to quickly capture deployment scenes using
consumer-grade devices and integrate them into Habitat-
Sim [18]. This enables training in realistic simulations, im-
proving sim-to-real transfer. Our method combines smart-
phone accessibility with recent advances in depth-aware 3D
representations, supporting rapid policy adaptation.

We evaluate our framework in an out-of-distribution uni-
versity scene, analyzing reconstruction pipelines and train-
ing strategies. Real-world experiments show significant
performance gains in image-goal navigation - 20-40% ab-
solute success rate (SR) compared to pre-trained policies
on HM3D and HSSD.

While there has been work on using 3D representations

Figure 1. Overview of EmbodiedSplat: Mobile phone captures
generate 3D Gaussian Splatting meshes for simulation training,
enabling agents to transfer effectively to the real world with strong
sim-to-real correlation across mesh types.

for robotics [2, 4, 9, 13, 14, 16, 26], to the best of our
knowledge, we are the first to explore a solution towards
real-world transfer and out-of-domain personalization for
image-goal navigation using 3DGS. Through this work, we
attempt to democratize high-quality scene capture and pol-
icy training, making it easier to build personalized agents.

2. Methodology
The overall pipeline for bridging and integrating a
real-world scene with Habitat-Sim [18] is shown in Fig. 2.
Scene Capture: Our real-world scene is a community
lounge set in a university environment. We use a manually-
held iPhone 13 Pro Max to record the iPhone RGB-D data
using the Polycam application [17, 20]. These captures are
processed using Nerfstudio [24] to sample ∼1000 frames.
Mesh Reconstruction: We use DN-Splatter [25] as our
method of choice for its superior performance on mesh re-
construction, with Metric3D-V2 [6] as our normal encoder.



Figure 2. The EmbodiedSplat Pipeline: Integrating real-world captures with Habitat-Sim [18]: (a.) Capture scenes with Polycam [17] and
extract data using Nerfstudio [24] (b.) Use DN-Splatter [25] to train GS using depth-normal regularization, with normals from Metric3D-
V2 [6] (c.) Process the mesh and load into Habitat-Sim (d.) Deploy trained policy in the real world.

It takes approximately 20-30 minutes per capture, and 1-
2 hours of training with DN-Splatter [25] to generate this
mesh, which is significantly lesser compared to the cost and
several hours of capture and processing with Matterport [1]
cameras. In addition to the mesh produced, Polycam also
provides a mesh with its exported data. We use this mesh
for comparison purposes. We fix the orientation of these
meshes using Blender, and then load them into Habitat-
Sim [18], on which ImageNav episodes are generated. The
training and deployment is done following the Habitat [18]
pipeline and Home-Robot [21] framework.

3. Experimental Results

First, we pre-trained policies on the HM3D [19] (83.08%
HM3D val SR) and HSSD [12] (63.15% HSSD val SR),
trained for 600M and 1200M steps, respectively. Then, we
fine-tuned the policies for 20M additional steps with learn-
ing rate 2.5e−6 for the LSTM policy and 6e−7 for the vi-
sual encoder, following a fine-tuning strategy similar to that
of Deitke et al. [5]. We evaluate both zero-shot and fine-
tuned policies in the real-world scene on a Stretch robot for
10 episodes each capped at 100 steps. To evaluate success,
we record number of steps and the distance to the goal.

Fig. 3 shows that the zero-shot HM3D policy achieves a
50% SR, demonstrating our hypothesized lack of general-
ization. This is in contrast with the results reported in Sil-
wal et al. [23] showing 90% zero-shot real-world SR. We at-
tribute this discrepancy to the structural and semantic differ-
ences between the lounge and the apartment-style scenes
typically encountered in HM3D. Fine-tuning on the POLY-
CAM and DN mesh reconstructions of this scene improves
performance, with real-world SRs increasing up to 70%.
For HSSD, zero-shot performance is significantly lower at
10%, while fine-tuned policies improve SRs to 50% with
POLYCAM and 40% with DN mesh. These results highlight

Figure 3. Real world results of zero-shot and fine-tuned models
on lounge scene.

the need for realistic captures, especially high-fidelity re-
constructions of the deployment environment, to help with
improved sim-to-real transfer.

Fig. 1 illustrates the Sim-to-Real Correlation Coefficient
(SRCC) [10] between simulation and real-world perfor-
mance. The observation suggests that improvements in
evaluation performance on DN and POLYCAM meshes in
simulation translate to improved real-world performance.
This demonstrates that our approach can efficiently adapt
policies to novel real-world environments.

4. Conclusion
In this work, we presented a scalable pipeline for bridging
the sim-to-real gap in image navigation using 3D Gaussian
Splats and Polycam. Leveraging iPhone-captured scenes,
our approach enables efficient policy personalization and
high-quality training with minimal effort and cost. This
practical framework supports accessible scene collection for
large-scale embodied AI research. In future, we aim to
extend this approach to more complex tasks, such as re-
arrangement and mobile manipulation, to further advance
real-world applications.
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