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Figure 1. Proposed dual representation using Birds-Eye View (BEV) and 3D sparse points, providing efficient, complementary modeling capabilities to
capture both objects in 3D and flat surfaces, which is critical for autonomous perception.

1. Introduction
3D scene understanding [5, 9, 13, 18, 24] forms the foun-
dation of autonomous systems, such as self-driving vehicles
and navigation robots. Recently, 3D occupancy prediction
has emerged as a new paradigm for scene understanding,
which aims to infer fine-grained 3D geometry and seman-
tics from camera images [2, 6, 7, 11, 14, 15, 17, 19–23]. It
provides critical scene information with a level of granular-
ity beyond depth estimation and 3D object detection, which
is crucial for downstream tasks such as motion planning.

Many existing solutions adopt dense voxel grid [11, 19,
23] as scene representation, followed by cross-attention to
aggregate image features, which are then mapped to 3D
occupancy. Such design entails significant memory foot-
print and computational cost, making it difficult to deploy
on resource-constrained platforms. To avoid the high com-
putational costs, recent works have adopted the Birds-Eye-
View (BEV) representation [4, 22] and demonstrated much
improved inference runtime. However, small objects are
poorly captured by BEV, as their feature representation af-
ter being projected onto the BEV plane is very limited.
To mitigate this, another line of research proposed learn-
ing the 3D scene as a set of sparse points with learnable
queries [10, 17], which demonstrated competitive accuracy
and latency. Yet, it is still not sensible to use sparse rep-
resentation to capture flat surfaces such as the road, which
would require a large number of points.

In this work, we propose a new approach, named BePo,
which combines the advantages of BEV and sparse repre-

Figure 2. Accuracy (mIoU on Occ3D-nuScenes [1, 15]) vs. inference
latency (ms) measured on a single NVIDIA A100 GPU.

sentations. As shown in Fig. 1, we advocate a dual-branch
design, where one branch first adopts effic ient view trans-
form to BEV followed by fast operations such as 2D con-
volutions for processing, and the other leverages sparse 3D
points and a coarse-to-fine decoding scheme. To enable in-
formation flow between the two branches, we utilize cross-
attention to transfer knowledge from features learned in the
points branch to enrich the BEV features. Such learned
3D information from the sparse points can effectively in-
ject more learning signals especially of small objects that
have limited feature representation on BEV.

By leveraging the dual representation of BEV and sparse
points, BePo maintains high efficiency; meanwhile, its
stronger 3D modeling power leads to better 3D occupancy
prediction performance, as summarized in Figure 2.
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Table 1. 3D occupancy prediction results on Occ-ScanNet validation set [21]. Bold/Underline: Best/second best results.
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MonoScene [2] 41.60 24.62 15.17 44.71 22.41 12.55 26.11 27.03 35.91 28.32 6.57 32.16 19.84
ISO [21] 42.16 28.71 19.88 41.88 22.37 16.98 29.09 42.43 42.00 29.60 10.62 36.36 24.61

Ours 52.73 44.91 41.32 50.29 41.83 31.81 40.37 54.65 60.71 43.76 34.27 53.33 41.72

Table 2. 3D semantic occupancy prediction mIoU results on Occ3D-nuScenes validation set [1]. Bold/Underline: Best/second best results.
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MonoScene [2] 6.06 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65
BEVFormer [7] 23.67 5.03 38.79 9.98 34.41 41.09 13.24 16.50 18.15 17.83 18.66 27.70 48.95 27.73 29.08 25.38 15.41 14.46
TPVFormer [6] 27.83 7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78
OccFormer [23] 21.93 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97
RenderOcc [11] 26.11 4.84 31.72 10.72 27.67 26.45 13.87 18.2 17.67 17.84 21.19 23.25 63.2 36.42 46.21 44.26 19.58 20.72
FlashOcc [22] 31.95 6.21 39.56 11.27 36.31 43.96 16.25 14.74 16.89 15.76 28.56 30.01 78.16 37.52 47.42 51.35 36.79 31.42
OPUS [17] 30.86 9.68 36.17 15.86 38.65 43.41 21.81 17.21 14.63 15.43 26.92 32.04 71.42 35.96 42.65 41.92 30.61 30.26

Ours 34.53 11.29 40.99 16.02 42.77 45.54 25.11 21.89 21.02 17.11 29.93 32.33 76.84 37.91 44.77 53.12 36.77 35.18

2. Method
BePo employs a dual representation, which combines the
strengths of both dense BEV grid and sparse 3D points.
BEV Branch Multi-scale features Fim ∈ RC×H×W are
extracted from the input camera images via an image en-
coder, which then undergo view transform T to be projected
onto BEV. Here we choose T to be LSS [12] given its effi-
ciency. Afterwards, a BEV encoder E consisting of a stack
of convolutional layers and an FPN [8] neck are used to pro-
cess the BEV features to obtain Fbev ∈ RCb×Hb×Wb .
Sparse Points Branch We randomly initialize a set of
learnable queries Q and 3D points P. Q and P are used
to sample image features Fim and then processed by several
transformer layers. Formally, denote Si = {Qi,Pi,Ci}ℓi=0

the sets with Ci being the class scores for Pi, where S0 is
the initial set and Si>0 are the outputs from the i-th de-
coder stage. ℓ is the number of decoder layers. To re-
duce computation bottleneck, we follow [17] and make each
qi ∈ Qi predict multiple points instead of one, denoted as
Mi. A coarse-to-fine procedure such that Mi−1 ≤ Mi, i =
{1, . . . , ℓ} is adopted to facilitate predicting high-level se-
mantics from low-level features.
Cross-Branch Attention and Fusion We compute cross-
attention [16] between BEV features Fbev and query fea-
tures qℓ ∈ RMi×Cq from the last decoding stage. Specif-
ically, we treat Fbev as queries and qℓ as keys and values,
injecting the more 3D-aware features into BEV. A linear
layer is used to match the embedding dimensions of both
sets of features. We fuse the outputs of the two branches to
generate the final 3D occupancy prediction.

3. Experiments
Datasets We conduct evaluation based on ScanNet [3]
which contains 1,513 room scans, and nuScenes [1] which

Figure 3. 3D occupancy prediction of our BePo on the Occ3D-
nuScenes [15] validation set.

consists of 1,000 driving scenes, covering both indoor and
outdoor scenarios. Specifically, we use Occ-ScanNet [21]
which curates 3D occupancy ground truth providing 11 se-
mantic classes and Occ3D-nuScenes [15] which annotates
occupancy ground-truth for nuScenes consisting of 17 se-
mantic classes.
Results Evaluation results on OccScanNet and Occ3D-
nuScenes are respectively shown in Table 1 and Table 2. It
is evident that BePo improves prediction of difficult objects
across the board. On ScanNet, BePo establishes a +17.11
mIoU improvement under the Objects category compared
to the second-best method. On nuScenes, BePo consis-
tently improves for Others (+1.61), Motorcycle (+1.90) and
Pedestrians (+2.17) on top of second-best, validating the ef-
fectiveness of our proposed dual representation.
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