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Abstract

In the realm of embodied intelligence, the evolution
of large language models (LLMs) has markedly enhanced
agent decision making. Consequently, researchers have be-
gun exploring agent performance in dynamically chang-
ing high-risk scenarios, i.e., fire, flood, and wind scenar-
ios in the HAZARD benchmark. Under these extreme con-
ditions, the delay in decision making emerges as a cru-
cial yet insufficiently studied issue. We propose a Time
Conversion Mechanism (TCM) that translates inference de-
lays in decision-making into equivalent simulation frames,
thus aligning cognitive and physical costs under a single
FPS-based metric. By extending HAZARD with Respond
Latency (RL) and Latency-to-Action Ratio (LAR), we de-
liver a fully latency-aware evaluation protocol. Moreover,
we present the Rapid-Reflex Async-Reflect Agent (RRARA),
which couples a lightweight LLM-guided feedback module
with a rule-based agent to enable immediate reactive be-
haviors and asynchronous reflective refinements in situ. Ex-
periments on HAZARD show that RRARA substantially out-
performs existing baselines in latency-sensitive scenarios.

1. Introduction
Recent advances in large language models (LLMs) have

enabled promising applications in autonomous decision-
making agents [2, 9, 13, 16, 19, 20]. Most embodied AI
frameworks [6, 8, 10, 12, 17] focus on planning and deci-
sion quality under static conditions following a perceive-
think-act paradigm. At inference time, agents pause to rea-
son before acting, which is costly in dynamic environments
where even brief delays can lead to outdated decisions. This
limitation becomes especially critical in scenarios like fire
rescue, as shown in Fig. 1. Such high inference latency pro-
duces stale observations and obsolete context, causing mis-
aligned or suboptimal behaviors.

While several methods consider latency issues in embod-
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Figure 1. Environment changes during inference can lead to out-
dated responses, e.g., object is burnt before execution completes.

ied AI [3, 14, 15], they primarily focus on low-level control
rather than high-level reasoning and planning. Meanwhile,
existing benchmarks [1,4,5,7,11] adopt largely static envi-
ronments, where object positions remain unchanged and the
impact of inference time is minimal. The recent HAZARD
benchmark [18] simulates dynamic fire, flood, and wind dis-
aster scenarios, yet it still follows the common practice of
ignoring inference latency during agent evaluation.

To fill this gap, we introduce the Time Conversion Mech-
anism (TCM), which translates inference delays into equiv-
alent simulation frames and unifies reasoning and execu-
tion costs under a single FPS-based metric. We then intro-
duce Rapid-Reflex Async-Reflect Agent (RRARA), a hy-
brid agent where rapid reflexive policies trigger immedi-
ate actions while an asynchronous LLM Reflector analyzes
and refines those actions in situ. Integrated with HAZARD,
RRARA quantifies the cost of deliberation via TCM and
demonstrates its ability to revise suboptimal choices during
dynamic rescue operations.

2. Time Conversion Mechanism
In standard HAZARD, agent performance is measured

solely by the number of frames spent executing actions, de-
coupling reasoning time from environmental progression.
The Time Conversion Mechanism (TCM) remedies this by
mapping inference delay into simulation frames: Finf =
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Figure 2. Illustration of the reflective process in RRARA. The
low-latency policy greedily selects the closest object (Left). Af-
ter receiving feedback from the LLM Reflector, it pursues a more
valuable object instead (Right).

Tinf × FPS. Here, Tinf denotes the agent’s decision latency
in seconds, and FPS is the simulation frame rate. The agent
observes at T0 and reasons on its next action AT0

, incurring
a latency of Tinf seconds. Concurrently, the environment
continues evolving independently, and AT0

is executed at
T0+Tinf, increasing the risk of acting on outdated informa-
tion. By integrating inference-time, TCM aligns the eval-
uation with real-world constraints, penalizing slow deliber-
ation in fast-evolving environments. Consequently, agents
must balance accuracy with efficiency, as extended reason-
ing directly reduces the time available for rescue operations.

3. Rapid-Reflex Async-Reflect Agent

To address the real-time responsiveness challenges
posed by inference latency issues, as quantified by our
proposed TCM, we introduce Rapid-Reflex Async-Reflect
Agent (RRARA), a training-free embodied agent designed
for dynamic environments. As illustrated in Fig. 2, RRARA
combines a low-latency rule-based policy with an LLM-
based Reflector that simultaneously reflects on the ongoing
decisions and delivers feedback with in-depth reasoning.

Specifically, upon perceiving the environment, the agent
executes an initial action determined by a rule-based pol-
icy with negligible latency—for example, walking toward
an object in the center of the room. In parallel, the LLM-
based Reflector receives details of current and prior actions
along with observations of visible objects, and reflects on
whether the ongoing action remains suitable for the current
situation. If the Reflector validates the current action, the
agent proceeds without interruption; otherwise, it interrupts
the reflex and switches to the suggested alternative. The Re-
flector perpetually evaluates action outcomes and triggers
new LLM-based reasoning immediately as each reflexive
action begins. This parallel reflect-and-feedback mecha-
nism enhances decision quality without introducing addi-
tional inference latency. By interleaving immediate reflexes
with high-level reflection, RRARA achieves real-time re-

Agent VR ↑ DR↓ RL (s) ↓ LAR ↓
Rule 0.20 0.33 0.00 0.00
Greedy 0.22 0.24 0.00 0.00
MCTS 0.09 0.35 3.26 0.57
GPT-3.5 0.20 0.33 2.35 0.50
GPT-4 0.08 0.42 4.11 0.84
GPT-4.1 0.14 0.40 3.85 0.71
Llama-2-7b 0.03 0.90 15.60 0.96

RRARA (Rule) 0.25 0.29 0.00 0.00
RRARA (Greedy) 0.29 0.23 0.00 0.00

Table 1. Evaluation results of the fire hazard scenario [18] with
proposed TCM. Including Value Rate (VR), Damage Ratio (DR),
Respond Latency (RL), and Latency-to-Action Ratio (LAR).

sponsiveness while integrating the high-level reasoning ca-
pabilities of the LLM, allowing for refined decision-making
without sacrificing responsiveness.

4. Experiments and Discussion

We introduce two additional metrics to enhance HAZ-
ARD [18]: Respond Latency (RL) and Latency-to-Action
Ratio (LAR). RL measures the average inference time per
decision step, while LAR quantifies the proportion of time
spent reasoning relative to acting. As these metrics can vary
with hardware, all experiments are conducted on a system
with Intel Core i7-11700 and a single NVIDIA GeForce
RTX 3090 GPU. We perform experiments on the fire sce-
nario of HAZARD benchmark [18], with Rule and Greedy
in [18] as the reflex policy and GPT-3.5 serving as the Re-
flector in RRARA. The HAZARD simulator operates at 30
FPS, and experiment results are reported in Tab. 1.

It can be observed that LLM-based and MCTS-based
agents, despite their sophisticated reasoning capabilities,
fail to outperform even a basic rule-based baseline. This
supports our hypothesis that in highly dynamic environ-
ments, the high inference latency of complex agents re-
sults in delayed actions and outdated reasoning. By inte-
grating TCM and deploying RRARA within HAZARD, we
observe that RRARA outperforms its individual counter-
parts—including the Rule and Greedy poliy, and the GPT-
3.5–based agent. Beyond outperforming these components
in isolation, RRARA also achieves the best performance
among all evaluated baselines. Empirical results show that
the LLM-based evaluator intervenes in roughly 60% of ac-
tion steps, steering the agent toward better planning without
incurring critical latency.

In conclusion, TCM-assisted evaluation highlights the
critical role of real-time responsiveness in embodied agents
operating in dynamic environments. Our proposed RRARA
demonstrates a simple yet effective paradigm for advancing
embodied AI for real-world tasks.
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