
What matters in ImageNav: architecture, pre-training, sim settings, pose

Gianluca Monaci, Philippe Weinzaepfel, Christian Wolf
NAVER LABS Europe, Grenoble, France

Introduction – State-of-the-art image goal navigation
(ImageNav) methods either rely on dedicated image-
matching [7] or pre-training of vision modules on rela-
tive pose estimation [3] or image reconstruction [14]. Re-
cently, findings reported in [11] suggest that ImageNav can
be solved by very low-capacity ResNet with channel-wise
stacking and RL-training alone, without pre-training. These
results raise interesting questions: can directional informa-
tion, crucial to tackle ImageNav, be learned by RL alone,
and by comparably simple architectures? In this study we
investigate the effect of architectural choices like late fu-
sion, channel stacking and cross-attention, and find that:
• Pre-training and early patch-wise fusion are essential

for strong performance, compared to late fusion.
• Success of recent frugal channel stacking architectures is

likely due to a simulator setting allowing agents to slide
along obstacles. Interestingly, capabilities learned in this
regime can be transferred to realistic settings if the trans-
fer includes weights of the perception network.

• Navigation and (emerging) relative pose estimation
performance are correlated.

Methods – We study the ImageNav task in photo-realistic
3D environments, where an agent is given a goal image g
and has to navigate from a starting location to the goal po-
sition using only RGB images ot. All our experiments are
done with variants of the same standard agent, which main-
tains a recurrent episodic memory ht, integrates the obser-
vation ot and the goal image g, and predicts actions at:

g̃t = ϕ(ot,g) // binocular encoder

ht = h(ht−1, g̃t, ζ(at−1)) // state update

at ∼ π(ht), // policy

(1)

where h is the function updating the hidden state ht of a
GRU [5], ϕ and ζ are trainable encoders, and π is a linear
policy trained with PPO [10] with reward as in [3, 4].

We fix h and π, and investigate the impact of various
building blocks used in literature for binocular encoder ϕ:
Late fusion Networks such as [1, 14], use separate net-

works ϕo and ϕg to encode observation and goal, hence
ϕ(ot,g) = [ϕo(ot), ϕg(g)] where [.] denotes concatena-
tion. ϕo(ot) and ϕg(g) are compared “late”, which makes
it generally harder to be done on a local image level, un-
less the representations retain sufficient spatial structure.

ChannelCat as in [11] uses a single network to encode
both, observation and goal, which are channel stacked
into one input image, denoted as ϕ ([ot,g]dim=1), where
0 is the batch dimension and 1 the channel dimension.

SpaceToDepth reshapes image patches into channel val-
ues, was introduced in [8] and is used in [11] in combina-
tion with ChannelCat. We study whether a ResNet with
this module can compute correspondences across large
spatial dimensions in one convolutional layer, somewhat
reminiscent of cross-attention, only with few parameters.

Cross-attention is a natural way to compute correspon-
dences between local images parts [3], as each patch in
one image can be naturally linked to one or more patches
in the other through the cross-attention distribution.

Experiments – We train all agents from scratch with the
same experimental protocol using the Habitat simulator [9]
on 72 train scenes of the Gibson dataset [13], and evaluate
by success rate (SR) and SPL [2] on the val split (14 scenes),
using the default Habitat episode definition. All images are
112×112 and the discrete action space is A ={MOVE FWD

0.25m, TURN LEFT 10◦, TURN RIGHT 10◦, and STOP}.
An episode is successful if the agent calls STOP within 1m
of the goal position and within its 1000 steps budget.

We test networks ϕ implemented as ResNet9 [1, 11],
ViT-Small [12] and DEBiT-Base [3], available in their re-
spective public repositories. ζ embeds the previous action
in a 32D feature, h is a GRU with 2 layers of hidden dimen-
sion 128, followed by a linear Actor-Critic policy π.

A critical setting in the Habitat simulator is the binary
Sliding switch, which is known to have a big impact
on sim2real transfer [6]: when True, the agent can slide
along obstacles when colliding, against the more realistic
behavior of stopping. While this setting is True by de-
fault, there is consensus in the field that it should be set
to False to decrease the sim2real gap. All methods we
could verify use Sliding=False, with the notable ex-
ception of [11]. We therefore performed experiments with
both settings and observed a big influence of this parame-
ter. Table entries are color-coded into: (i) Sliding=True

and (ii) Sliding=False ; Pre-train indicates that ϕ has
been pre-trained on relative pose and visibility estimation
(RPVE), the default DEBiT setup [3].

1



Model s2d† Backbone SR SPL SR SPL
(a) Late Fusion ✗ ResNet9 13.8 8.0 12.8 7.1
(b) Late Fusion [1] ✓ ResNet9 12.5 7.6 13.2 8.9
(c) Late Fusion ✗ ViT-Small 12.5 6.7 6.9 4.5
(d) ChannelCat ✗ ResNet9 83.2 43.9 44.6 23.4
(e) ChannelCat [11] ✓ ResNet9 83.6 42.1 31.7 18.7
(f) ChannelCat ✗ ViT-Small 71.1 34.3 35.3 16.2
(g) Cross-attn ✗ DEBiT-B 0.0 0.0 0.0 0.0
(h) Cross-attn [3] ✗ DEBiT-B‡ 90.5 60.3 81.7 52.0

Table 1. Agents with different visual encoders trained
and validated with Sliding=True or Sliding=False .
s2d†=SpaceToDepth. ‡=pre-trained for RPVE .

Results – Table 1 summarizes results for different archi-
tectures and settings. With Sliding=True , ChannelCat
(d)-(f) obtains excellent performance, close to DEBiT-B (h)
which has a larger, more complex architecture, and is pre-
trained on RPVE. Without pre-training, DEBiT is not ex-
ploitable, as also reported in [3]. Late Fusion architec-
tures (a)-(c) underperform, and SpaceToDepth has no sig-
nificant impact on either ChannelCat or Late Fusion mod-
els. With Sliding=False the trends change dramati-
cally. While the impact on the (previously already under-
performing) Late Fusion architecture is similar, Channel-
Cat, (d)-(f), now breaks down and performance is halved,
or less. In contrast, DEBiT is able to cope well with the
more realistic Sliding=False setting, arguably because
of its strong pre-trained visual encoder, confirming the im-
portance of visual pre-training.

We then investigate whether (i) agents trained in their
respective settings (Sliding=True / False) have sim-
ilar capabilities but perform differently due to the differ-
ence in task difficulty, or (ii) training with sliding actually
leads to different and potentially better performing agents.
We test these hypotheses by performing experiments load-
ing the weights of the ChannelCat+ResNet9 agent (Tab. 1e)
trained with Sliding=True, and validating it on False.
Table 2, row (b) shows that this agent achieves SR=54.6%,
compared to the baseline of 31.7% trained on False (a).
This is surprising: some capabilities learned with sliding
enabled can be transferred to more realistic settings. Fine-
tuning this agent for 100M steps on False provides further
gains and yields SR of 65.7% (c).

To pinpoint this effect, we load different parts of the
agent trained with Sliding=True. Transferring the action
part of the agent (ζ, h, π), rows (d) and (e), does not lead
to any discernible performance. However, transferring the
perception weights ϕ and training the action part, rows (f)
and (g), leads to exploitable results. With SR=38.5% for
the finetuned version (g), performance are higher than the
in-domain baseline of 31.7% trained on False.

We conjecture that the easier task (True) allows to learn
additional capabilities that transfer to the harder task, and
which are partially related to perception (since performance

Perception Action (%)
Checkpoint ϕ ζ h π SR SPL

(a) Load all “false” f∗ f∗ f∗ f∗ 31.7 18.7
(b) Load all “true” t∗ t∗ t∗ t∗ 54.6 27.5
(c) Load all “true” t→ t→ t→ t→ 65.7 34.1
(d) Load action “true” ⟳ t∗ t∗ t∗ 0.0 0.0
(e) Load action “true” ⟳ t→ t→ t→ 6.1 4.8
(f) Load perception ”true” t∗ ⟳ ⟳ ⟳ 26.4 14.3
(g) Load perception “true” t→ ⟳ ⟳ ⟳ 38.5 20.3

Table 2. OOD behavior and cross-domain transfer f : load from
Sliding=False, t: load from Sliding=True, ∗: frozen ,
→: finetune , ⟳: re-train from scratch .

Model s2d† Backbone S‡ %corr.poses %corr.vis.
(Table nr. + row) 1m,10° 2m,20° <0.05

Late Fusion 1b ✓ ResNet9 ✓ 9.0 29.6 16.1
ChannelCat 1e ✓ ResNet9 ✓ 18.4 41.6 20.8
Late Fusion 1b ✓ ResNet9 ✗ 8.7 28.5 16.1
ChannelCat 1e ✓ ResNet9 ✗ 12.5 31.9 19.2
ChannelCat 2c ✓ ResNet9 → 18.2 41.4 21.1
ChannelCat 2d ✓ ResNet9 → 5.8 22.9 6.7
ChannelCat 2e ✓ ResNet9 → 7.2 26.1 11.9
ChannelCat 2g ✓ ResNet9 → 18.6 41.6 21.0
Cross-attn 1h ✗ DEBiT-B N/A 92.1 96.8 88.8

Table 3. Probing RPVE: DEBiT-B is not comparable as it was
pre-trained for RPVE. S‡ = Sliding=True. The third block
shows agents finetuned (→) from True to False, cf. Tab. 2.

in Tab. 2(g) > 2(a)), but also to action, since Tab. 2(b) ≫
2(a) and 2(b) ≫ 2(g). We hypothesize that training with
False leads to undertraining of both action and perception:
the policy gets stuck (which we empirically confirmed) and
does not learn to cope with the last meters of each episode;
this, in turn, leads to undertraining the comparison between
the (hardly ever seen) goals and observations.

Finally, we investigate how well the different visual en-
coders can extract directional information, a crucial skill to
solve ImageNav. The frozen visual encoders ϕ of agents
in Tab. 1 are probed with an MLP network of hidden size
1024, trained to predict RPVE using the same procedure,
dataset and loss described in [3]. Tab. 3 displays perfor-
mance measured as % of correct poses for given distance
and angle thresholds, and % of predictions within a 0.05
margin of the ground-truth value. While ChannelCat ob-
tains high navigation performance with Sliding=True,
pose estimation performance remains limited. Late Fusion
models achieve low navigation and pose estimation perfor-
mance. In the Sliding=False setting, pose estimation
performance drop, especially for ChannelCat. Transferring
models trained with True on the False setting provides
gains not only in navigation but also on pose estimation
— only when at least the weights of encoder ϕ are trans-
ferred, but in particular when the whole agent is transferred
and finetuned, further corroborating our conjecture, that the
perception model is undertrained when sliding is disabled.

2



References
[1] Ziad Al-Halah, Santhosh Kumar Ramakrishnan, and Kris-

ten Grauman. Zero experience required: Plug & play
modular transfer learning for semantic visual navigation.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 1, 2

[2] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied navi-
gation agents. arXiv preprint, 2018. 1

[3] Guillaume Bono, Leonid Antsfeld, Boris Chidlovskii,
Philippe Weinzaepfel, and Christian Wolf. End-to-End
(Instance)-Image Goal Navigation through Correspondence
as an Emergent Phenomenon,. In International Conference
on Learning Representations (ICLR), 2024. 1, 2

[4] Prithvijit Chattopadhyay, Judy Hoffman, Roozbeh Mottaghi,
and Aniruddha Kembhavi. Robustnav: Towards benchmark-
ing robustness in embodied navigation. In IEEE/CVF In-
ternational Conference on Computer Vision (CVPR), pages
15691–15700, 2021. 1

[5] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Transla-
tion. In Empirical Methods in Natural Language Processing
(EMNLP), 2014. 1

[6] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexan-
der Clegg, Erik Wijmans, Stefan Lee, Manolis Savva, Sonia
Chernova, and Dhruv Batra. Sim2real predictivity: Does
evaluation in simulation predict real-world performance?
IEEE Robotics Autom. Lett., 2020. 1

[7] Jacob Krantz, Theophile Gervet, Karmesh Yadav, Austin
Wang, Chris Paxton, Roozbeh Mottaghi, Dhruv Batra, Jiten-
dra Malik, Stefan Lee, and Devendra Singh Chaplot. Navi-
gating to objects specified by images. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2023. 1

[8] Tal Ridnik, Hussam Lawen, Asaf Noy, Emanuel Ben Baruch,
Gilad Sharir, and Itamar Friedman. Tresnet: High perfor-
mance gpu-dedicated architecture. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.
1

[9] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A platform for embodied ai research. In In-
ternational Conference on Computer Vision (ICCV), 2019.
1

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint, 2017. 1

[11] Xinyu Sun, Peihao Chen, Jugang Fan, Jian Chen, Thomas
Li, and Mingkui Tan. Fgprompt: fine-grained goal prompt-
ing for image-goal navigation. In Conference on Neural In-
formation Processing Systems (NeurIPS), 2024. 1, 2

[12] Ross Wightman. Pytorch image models. https:
//github.com/huggingface/pytorch-image-
models, 2019. 1

[13] Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jiten-
dra Malik, and Silvio Savarese. Gibson Env: real-world per-
ception for embodied agents. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 1

[14] Karmesh Yadav, Arjun Majumdar, Ram Ramrakhya,
Naoki Yokoyama, Alexei Baevski, Zsolt Kira, Oleksandr
Maksymets, and Dhruv Batra. OVRL-V2: A simple state-of-
art baseline for ImageNav and ObjectNav. In arXiv preprint,
2023. 1

3

https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

