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Abstract

While success in many robotics tasks can be determined by
only observing the final state and how it differs from the
initial state — e.g., if an apple is picked up — many tasks
require observing the full motion of the robot to correctly
determine success. For example, brushing hair requires re-
peated strokes that correspond to the contours and type of
hair. Prior works often use off-the-shelf vision-language
models (VLMs) as success detectors; however, when success
depends on the full trajectory, VLMs struggle to make cor-
rect judgments for two reasons. First, modern VLMs often
use single frames, and thus cannot capture changes over
a full trajectory. Second, even if we provide state-of-the-
art VLMs with an input of multiple frames, they still fail to
correctly detect success due to a lack of robot data. Our
key idea is to fine-tune VLMs using abstract representations
that are able to capture trajectory-level information such
as the path the robot takes by overlaying keypoint trajec-
tories on the final image. We propose motion instruction
fine-tuning (MotIF), a method that fine-tunes VLMs using
the aforementioned abstract representations to semantically
ground the robot’s behavior in the environment. To bench-
mark and fine-tune VLMs for robotic motion understanding,
we introduce the MotlF-1K dataset containing 653 human
and 369 robot demonstrations across 13 task categories with
motion descriptions. MotlF assesses the success of robot
motion given task and motion instructions. Our model signif-
icantly outperforms state-of-the-art API-based single-frame
VLMs and video LMs by at least twice in F1 score with high
precision and recall, generalizing across unseen motions,
tasks, and environments. Finally, we demonstrate practical
applications of MotlF in ranking trajectories on how they
align with task and motion descriptions. Dataset, code, and
checkpoints are in

1. Introduction

Measuring success in robotics has focused primarily on what
robots should do, not how they should do it. Concretely,
what is determined by the final state of an object, robot,
or end-effector [2, 5]. However, not all trajectories that

achieve the same final state are equally successful. When
transporting a fragile object, a path through safer terrain
could be considered more successful than a shorter yet
riskier route ( ). Similarly, in the presence of humans
a robot’s actions when navigating, holding objects, or
brushing human hair ( ) can cause surprise,
discomfort, or pain, making such motions less successful.

Success detectors play an important role in robot learning
since they evaluate whether or not a robot has completed
a task. However, most overlook the importance of “how”
the task is accomplished, focusing on the initial and final
states of the trajectory [2, 3]. This simplification fails to
account for tasks that fundamentally require evaluating the
entire trajectory to assess success. As we incorporate robots
into everyday scenarios, the manner in which they complete
tasks will become increasingly important given the context
of a scene and its semantic grounding (e.g., avoid collision).
Therefore, a more holistic approach to success detection is
needed that considers both the task and how the agent should
move to complete it.

While modern vision-language models (VLMs) have
recently been used as promising tools for success detec-
tion [2, 3], they are unable to capture complex notions
of how a task is completed for two reasons. First, the
majority of VLMs are designed to reason over single images,
while success detection in robotics is inherently sequential.
Second, even models trained on multiple frames, like video
LMs, struggle to recognize fine-grained motion due to a
lack of training data. To bridge this gap, we explore how the
choice of abstract motion representations, such as visualiz-
ing trajectories, affects the performance of both VLMs and
video LMs. We propose a trajectory based visual motion
representation which overlays a robot’s past trajectory on
the current or final frame, capturing both the path shape
and its semantic connections to the environment. This
approach leverages the world knowledge encoded in VLMs
and refines it to assess robotic behaviors more effectively.

We propose motion instruction fine-tuning, a method
that fine-tunes pre-trained VLMs to equip the capability to
distinguish nuanced robotic motions with different shapes
and semantic groundings. Using the aforementioned trajec-
tory representation, we query our model to output a binary
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Figure 1. Different robotic motions for various tasks. For each task, we visualize two different motions (path 1 and 2) from real robot
demonstrations, where the trajectories share the same initial and final states. Most existing success detectors ignore intermediate states,

thereby cannot distinguish them.
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Figure 2. Comparison with off-the-shelf VLMs and Video LMs.

value indicating whether the motion is correct (1) or incor-
rect (0). To do so, we collect the MotIF-1K dataset, due to
limited availability of robot data with diverse semantically
grounded motions. We find that co-training mostly on human
data with limited robot data enables transfer to robotic mo-
tion understanding effectively. MotIF-1K contains a variety
of motions with 653 human and 369 robot demonstrations
across 13 task categories, offering extensive coverage of
both the what and the nuanced how of motion, complete
with detailed annotations. It identifies common types of
motions featuring varying degrees of semantic grounding,
such as the robot’s relationship with objects or humans in the

environment. The dataset also captures diverse path shapes,
in terms of directionality, concavity, and oscillation. For in-
stance, paths in Fig. la differ in terms of semantic grounding,
where it might be undesirable for a robot to pass over the

grass. Fig. 1d describes how straight and curly hairs require

different brushing techniques. Notably, MotIF-1K includes

subtle motions that are often indistinguishable solely by their

start and end states (see project page).

MotIF, a motion discriminator developed by fine-tuning
on MotIF-1K, shows further improved success detection on
nuanced robot motions. We evaluate MotIF on the test split
of MotIF-1K and demonstrate generalization to unseen mo-
tions, tasks, and environments (Fig. 2). We significantly out-
perform state-of-the-art (SoTA) VLMs (e.g. GPT-40, GPT-
4V, Gemini-1.5 Pro, LLaVA-1.6 [4], VideoLLaMA2 [1])
with both single and multi-frame (video) input, with at least
twice higher in both precision and F1, while maintaining
high recall. Co-training human data (653 demos) with mini-
mal robot data (20 demos) significantly improved recall by
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Figure 3. Co-training on Human and Robot Data.
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Figure 4. Refining and Terminating Robot Planning. MotIF
can close the loop of any existing open-loop controlled system by
determining success and giving this as a feedback to the system.
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Figure 5. Ranking Trajectories. We can use MotIF to rank
trajectories. (a) p(Ix|T", M) denotes how likely the motion in the
k" image corresponds to the given task instruction I and motion
description M. (b) Win rate evaluates each model by measuring
the prediction accuracy of pairwise rankings.

151.5% over robot-only baselines, demonstrating positive
transfer from human to robot data (Fig. 3). As shown in
Fig. 4, we can use MotIF to refine and terminate robot tra-
jectories. Also, we demonstrate using MotIF on ranking
real robot trajectories from a planner, outperforming SoTA
VLMs by at least 20.6% higher win rate.
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