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Abstract

We introduce Triply-Hierarchical Diffusion Policy (H3DP),
a novel visuomotor learning framework that explicitly incor-
porates hierarchical structures to strengthen the integration
between visual features and action generation. H3DP con-
tains 3 levels of hierarchy: (1) depth-aware input layering;
(2) multi-scale visual representations; and (3) a hierarchi-
cally conditioned diffusion process. Extensive experiments
demonstrate that H3DP yields a +27.5% average relative
improvement over baselines across 44 simulation tasks and
achieves superior performance in 4 challenging bimanual
real-world manipulation tasks.1

1. Introduction
Visuomotor policy learning is a prevailing paradigm in

robotic manipulation [2, 3, 22, 23, 25]. Existing approaches
have increasingly adopted powerful generative methods [5,
9, 12, 17, 20] to model the action generation process, but
often overlook establishing a tight correspondence between
perception and action. In this paper, we present H3DP, a
novel visuomotor policy learning framework grounded in
three levels of hierarchy.

At the input level, H3DP moves beyond prior 2D ap-
proaches [23, 26] by introducing a depth-aware layering
strategy that partitions RGB-D input into distinct layers
based on depth cues. For visual representation, to address
limitations of flattening image features [7, 10, 16], H3DP
employs multi-scale visual representation, where different
scales capture features at varying granularity levels. In action
generation, H3DP incorporates hierarchical action gener-
ation, leveraging the diffusion process’s tendency to pro-
gressively reconstruct features from low to high-frequency
components [4, 15, 19].

We validate H3DP through extensive experiments on 44
simulation tasks across 5 diverse benchmarks, where it sur-
passes state-of-the-art methods by a relative average mar-
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Figure 1. Overview of H3DP.
gin of +27.5%. Furthermore, real-world evaluations on bi-
manual robotic systems in cluttered, high-disturbance, long-
horizon tasks show H3DP achieves a +32.3% performance
improvement over Diffusion Policy.

2. Method
We employ three hierarchical structures to enhance the

policy’s understanding of visual input and predict more accu-
rate action distributions. A detailed discussion of each part
will be provided in the following sections.

2.1. Depth-aware Layering
To fully exploit the geometric structure inherent in

depth maps, we introduce a depth-aware layering mech-
anism. Pixels with depth d are assigned to layer m us-
ing linear-increasing discretization [24] m = ⌊−0.5 + 0.5√

1 + 4(N + 1)(N + 2) d−dmin

dmax−dmin+ϵ⌋, which promotes the
robot to focus more on its workspace. By explicitly encod-
ing objects distributed across different depth planes, this
structured representation retains all visual detail while strate-
gically utilizing depth to impose a meaningful foreground-
background separation, thereby enabling the policy to selec-
tively attend to different regions of the image.

2.2. Multi-Scale Visual Representation
Existing methods typically extract features at a sin-

gle spatial scale or compress them into a fixed-resolution
representation, limiting the expressiveness of learned fea-
tures [7, 10, 16]. To address this problem, we hierarchically
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Table 1. Simulation task results.
Method \ Tasks MetaWorld MetaWorld MetaWorld ManiSkill ManiSkill Adroit DexArt RoboTwin Average

(Medium 11) (Hard 5) (Hard++ 5) (Deformable 4) (Rigid 4) (3) (4) (8) (44)

H3DP 98.3 87.8 95.8 59.3 65.3 87.3 53.3 57.4 75.6±18.6

DP 78.2 52.6 58.0 22.3 27.5 79.0 44.3 22.8 48.1±23.1

DP (w/ depth) 77.7 57.2 71.2 44.5 40.8 76.0 42.0 12.6 52.8±22.2

DP3 89.1 52.6 88.4 26.5 33.5 84.0 54.8 45.9 59.3±24.9

partition the feature map into multiple scales, enabling the
capture of both coarse global and detailed local information.

Interpolation and Quantization. After applying depth-
aware layering to the input image I , each layer Im is indepen-
dently encoded into multi-scale feature maps {fm,k|fm,k ∈
Rhk×wk×C}Kk=1, where {(hk, wk)}Kk=1 denotes the spatial
resolutions across scales. Adopting the quantization de-
sign in VQ-VAE [14, 18], these feature maps {fm,k}Kk=1

are quantized into discrete vectors drawn from a learnable
codebook Zm ∈ RV×C . Specifically, each feature vector
f
(i,j)
m,k is mapped to its nearest neighbor in Euclidean distance:

f
(i,j)
m,k ← argmin

z∈Zm

∥z − f
(i,j)
m,k ∥2. By applying differentiable

interpolation and lightweight convolution to the quantized
features fm,k, we then obtain the multi-scale visual repre-
sentations {f̂m,k}Kk=1 for each layer Im.

2.3. Hierarchical Action Generation
To match the inherent inductive biases of denoising pro-

cess [4, 15, 19], we leverage multi-scale visual representa-
tions to model action generation in a coarse-to-fine manner.

Inference. Our action generation module is a denois-
ing diffusion model conditioned on multi-scale features
F = {f̂k = {f̂m,k}N−1

m=0}Kk=1 and robot poses q. The de-
noising process unfolds over T steps partitioned into K
stages ∪Kk=1(τk−1, τk]. When t ∈ (τk−1, τk], the denois-
ing network ϵ

(t)
θ conditioning on the corresponding feature

map f̂k and robot poses q, predicts the noise component
ϵt = ϵ

(t)
θ (at|f̂k, q), then generates at−1 = αta

t+βtϵ
t+σtϵ̃

t,
gradually transforming the Gaussian noise aT into the noise-
free action a0, where αt, βt, σt are fixed parameters, and
ϵ̃t ∼ N (0, I) is a Gaussian noise. Features at varying reso-
lutions retain information across distinct frequency domains.
By using lower-resolution features for earlier stages and
gradually refining the predictions with higher-resolution fea-
tures, the model benefits from both the stability of coarse
representations and the precision of fine details.

Training. To train the denoising network ϵ
(t)
θ , we ran-

domly sample an observation-action pair ((I, q), a0) ∈ D
and noise ϵ ∼ N (0, I). The network is optimized to pre-
dict ϵ given a noisy action conditioned on the final feature
map f̂K and robot pose q, via the objective: Ldiffusion =

Ea0,ϵ,t

[
∥ϵ(t)θ (

√
αta

0 +
√
1− αtϵ|f̂K , q)− ϵ∥2

]
.

3. Experiments
3.1. Simulation Experiments
3.1.1. Experiment setup

To sufficiently verify the effectiveness of H3DP, we eval-
uate H3DP on 5 simulation benchmarks, encompassing a

Table 2. Instance generalization results.
Method \ Tasks Place Bottle Sweep Trash Averagecoke bottle sprite can 8 cm3 64 cm3 216 cm3

H3DP 67 49 53 75 86 67 66.2
Diffusion Policy 45 36 40 52 72 60 50.8

total of 44 tasks [1, 6, 11, 13, 21]. To comprehensively as-
sess the performance of H3DP, we compare it against three
baselines: Diffusion Policy [3], Diffusion Policy (w/ depth)
and DP3 [23].

3.1.2. Simulation performance
As shown in Table 1, the simulation experiment results

exhibit that H3DP outperforms or achieves comparable per-
formance among the whole simulation benchmarks. Our
method outperforms DP3 by a relative average margin of
+27.5%. Notably, DP3 requires manual segmentation of
the point cloud to remove background and task-irrelevant
elements. In contrast, benefiting from our design, H3DP
obtains superior performance using only raw RGB-D input,
without the need for segmentation and human effort.
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Figure 2. Success rate in real-world.
3.2. Real-world Experiments

In terms of real-world experiments, we choose Galaxea
R1 robot as our platform. We use the ZED camera to ac-
quire the depth image with 60Hz running frequency. The
demonstrations are collected by Meta Quest3.

We design four diverse challenging real-world tasks to
evaluate the effectiveness of our method: Clean Fridge (CF),
Pour Juice (PJ), Place Bottle (PB), Sweep Trash (ST). Re-
garding the two long-horizon tasks, both the baseline and
our method incorporate the pre-trained ResNet18 [8] en-
coders for RGB modality to enhance the policy’s perceptual
capabilities in real-world environments.

3.2.1. Experiment Results
Spatial generalization: As shown in Figure 2, H3DP sig-

nificantly outperforms the baseline across all four real-world
tasks, achieving an average improvement of +32.3%. H3DP
demonstrates superior perceptual and decision-making capa-
bilities compared to alternative algorithms. Meanwhile, it
should be noted that in terms of the point cloud based method
DP3, it requires precise segmentation and high-fidelity depth
sensing, resulting in it being less effective in handling our
four cluttered real-world scenes that we designed.

Instance generalization: Regarding instance general-
ization, we evaluate the model on two real-world tasks by
varying the size and shape of bottles or trash items. As shown
in Table 2, after replacing the objects with variants of differ-
ing sizes and shapes, H3DP maintains strong generalization
capabilities attributable to its ability to hierarchically model
features at multiple levels of granularity, and consistently
outperforms baseline approaches across all settings.
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