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1. Introduction

While LLMs effectively provide general information and
common-sense knowledge for visual navigation [2, 5, 6, 16,
17], understanding real-time events in a dynamic world re-
mains challenging. This challenge stems, first, from the
lack of an active information-gathering function, and sec-
ond, from the absence of methods for searching the actively
collected information. We propose a new Embodied AI task
called Embodied Environment Description (EED) (Fig. 1),
in which an autonomous mobile robot explores an environ-
ment and summarizes it in natural language. To properly
evaluate this task, we use a crowdsourcing service to collect
human-generated environment descriptions and construct a
benchmark dataset. We also propose a reinforcement learn-
ing method for the robot’s environment exploration behav-
ior to perform this task, demonstrating its superior perfor-
mance compared to existing visual exploration methods.

2. Embodied Environment Description Task

In an EED episode, an agent explores the environment and
takes pictures. At each step t of the episode, the agent re-
ceives an egocentric RGB image ct ∈ R256×256×3 and a
corresponding depth image dt ∈ R256×256×1 as visual ob-
servation data ot = (ct, dt). The agent’s action space con-
sists of three actions: FORWARD, TURN-LEFT, TURN-
RIGHT. The RGB image ct can be stored at each step. The
episode length T is fixed and ends upon completing T ac-
tions. The agent then generates an environment description
Dgen of approximately 100 words, summarizing the envi-
ronment and events encountered based on the pictures. The
generated environment description is evaluated using a set
G of ground-truth descriptions (GT-Descriptions) written by
humans. We propose the following three evaluation metrics
suited to this specific task.
Similarity represents the similarity between the description
Dgen generated by the agent at the end of the episode and
the GT-Description DGT ∈ G. Both descriptions are vec-
torized using Sentence-BERT [13], and the average cosine
similarity between these vectors is calculated as the metric.
Position-Aware Semantic Score (PAS Score) emphasizes

Figure 1. Overview of Embodied Environment Description (EED).

word positioning when calculating the match between Dgen
and DGT. The PAS score is the average F1 score calculated
from Precision and Recall, considering the weight of the
first words in a sentence.
Human-Enhanced Similarity Score (HES Score) repli-
cates human evaluation of environment descriptions by fine-
tuning an LLM. We fine-tune Sentence-BERT [13] using a
dataset of human evaluations of environment descriptions
we collected. The output values are normalized to [0.0, 1.0].
It is experimentally confirmed that the correlation between
the HES score and human evaluation is 0.840, which is sig-
nificantly higher than the BLEU score of 0.548.

2.1. Data Collection through Crowdsourcing

We used the crowdsourcing platform Amazon Mechanical
Turk (AMT) to create a set G of five GT-Descriptions for
each of 90 scenes in Matterport 3D [4]. Subsequently,
we collected human evaluation data for environment de-
scriptions. Using a custom browser-based tool we devel-
oped, workers watched videos that comprehensively ex-
plored Matterport 3D scenes in Habitat-Sim [14], wrote en-
vironment descriptions, and evaluated those descriptions.
These data were collected through the platform. We man-
ually filtered poor-quality data. The set of GT-Descriptions
G for each scene consists of five descriptions: the four de-
scriptions collected as described above, along with one ad-
ditional description created by us. For the collection of hu-
man evaluation data, we selected 20 descriptions from each
of 11 scenes for evaluation. Each worker rated a set of five
displayed descriptions on a 5-point Likert scale from 1 to 5.
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(a) HES score (b) ED-S [3]

Figure 2. Comparison of SD-Selection and Speaker Policy [3].

Table 1. Experimental results for the EED Task.

Method HES score PAS score Similarity BLEU ROUGE-1 METEOR Explored Area

Random 0.740 0.482 0.584 0.021 0.320 0.208 0.152
Novelty 0.760 0.503 0.592 0.022 0.323 0.212 0.169
Coverage 0.756 0.495 0.596 0.021 0.326 0.210 0.308
Smooth-Coverage [12] 0.752 0.489 0.589 0.021 0.325 0.209 0.202
Curiosity 0.746 0.469 0.588 0.022 0.329 0.211 0.153
Reconstruction 0.714 0.501 0.583 0.022 0.339 0.211 0.160
EnvDescriber (Ours) 0.767 0.512 0.595 0.021 0.330 0.212 0.206

Human Baseline 0.781 0.532 0.630 0.022 0.333 0.222 -

The evaluation score for each environment description was
calculated as the average of scores collected from 10 dif-
ferent workers. Krippendorff’s α [7], which measures the
degree of agreement between annotators, was 0.320, indi-
cating that our collected data is highly reliable [10].

2.2. Method

Picture Selection. We define the value vp for each pic-
ture p ∈ P , and based on this value and the similarity be-
tween pairs of pictures, the selection is made to create the
set of pictures Pselect required for generating the environ-
mental description. First, the value of a picture is defined
as vp = N sal

p × N cat
p . In this equation, N sal

p is the num-
ber of pixels in the predicted saliency map ŝp of picture p
(generated by TranSalNet [9]) with a value of 0.5 or higher,
and N cat

p is the number of object categories present in p.
Then, using vp and the similarity Sim(pi, pj) between pi
and pj computed by CLIP [11], we construct the set Pselect.
From now on, we refer to this method of selecting pictures
as Saliency-Driven Selection (SD-Selection).
Environmental Description Generation. The agent gen-
erates the environmental description Dgen by inputting the
set of pictures selected Pselect into a VLM. We use LLaVA
[8] as the VLM. First, each picture pi ∈ Pselect is input to the
VLM to generate the description Dpi for picture pi. Next,
the pictures in Pselect are arranged in a two-column layout
to form a single image, which is then input to the VLM, re-
sulting in the output of the environmental description Dgen.
EnvDescriber: EnvDescriber is the exploration method
proposed in this paper and serves as the baseline for the
EED Task. The agent is trained using a reward structure
that combines four reward components, defined as rt =
rHES + rarea + rsub−goal + rtime−penalty. In this equation,
rHES is provided only at the end of an episode and corre-
sponds to the HES score calculated between the generated
environment description and the GT set G. rarea is a re-
ward for spatial exploration. rsub−goal is computed based
on whether the agent observes objects mentioned in G at
time t. Finally, rtime−penalty is a negative slack reward.

3. Results and Discussion
Picture Selection Method Comparison. Figure 2 shows
a comparison between our proposed SD-Selection method
and the threshold-based picture selection method called

Speaker Policy, proposed by Bigazzi et al. [3], which is the
most closely related prior work. The comparison uses the
HES score and ED-S [3]. From the figure, we observe a
general trend that the evaluation scores increase as the num-
ber of selected pictures grows. Notably, SD-Selection is
plotted in the upper-left region for both metrics, indicating
that it performs better than Speaker Policy with fewer se-
lected pictures. Although Speaker Policies can exceed SD-
Selection by increasing the number of pictures, it is neces-
sary to select more than 100 pictures in some cases, making
it difficult to input into a time-consuming VLM.

Performance Evaluation of the EED Task. Our
dataset consists of Matterport3D scenes, with a standard
train/val/test split of 61/11/18 scenes. Following the rec-
ommendations of Anderson et al. [1], there is no overlap
between the train, validation, and test scenes. The agent’s
initial position is randomly sampled. All agents train with
proximal policy optimization (PPO) [15]. In addition to
the evaluation metrics described in Section 2, we evaluate
Explored Area, which is the rate of the area has already
been explored by the agent as a supplementary evaluation
measure. This experiment compares EnvDescriber with a
randomly acting agent and agents trained with the five ex-
ploration reward structures introduced by Ramakrishnan et
al. [12]. Additionally, we compare the performance of Hu-
man Baseline, where five humans performed the exploration
and picture selection, using the average performance as a
reference. Table 1 shows the performance of each method
in the validation scene episodes. This table shows that Ran-
dom exhibited the lowest performance across all metrics,
confirming that appropriate exploration behavior and pic-
ture selection are crucial for achieving good performance
in the EED task. Additionally, from the result of the high-
est Explored Area in Coverage, it is suggested that simply
exploring the environment broadly is insufficient, and how
the agent moves (and collects information) is essential for
performance in the EED task. Furthermore, EnvDescriber
achieved the highest values for both the HES score and PAS
score, critical indicators in the EED task. This indicates that
focusing on visiting distinctive locations within the envi-
ronment and actively collecting information can contribute
to improved performance in the EED task. You can ac-
cess our dataset at https://github.com/ak-lab-
titech/EED.

https://github.com/ak-lab-titech/EED
https://github.com/ak-lab-titech/EED
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