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Abstract

Object navigation refers to the task of discovering and
locating objects in an unknown environment. End-to-end
deep learning methods struggle at this task due to sparse
rewards. In this work, we propose a simple neural-symbolic
approach for object navigation in the AI2-THOR environ-
ment. Our method takes raw RGB images as input and uses
a spatial memory graph as memory to store object and lo-
cation information. The architecture consists of both a con-
volutional neural network for object detection and a spatial
graph to represent the environment. By having a discrete
graph representation of the environment, the agent can di-
rectly use search or planning algorithms as high-level rea-
soning engines. Model performance is evaluated on both
task completion rate and steps required to reach target ob-
jects. Empirical results demonstrate that our approach can
achieve performance close to the optimal. Our work builds
a foundation for a neural-symbolic approach that can rea-
son via unstructured visual cues.

1. Introduction
Object navigation refers to the task of finding specific

scenes or objects in an unknown environment [2]. Solv-
ing the object navigation problem is necessary for building
intelligent systems that can autonomously conduct tasks in
any given environment. Object navigation is a natural abil-
ity possessed most animals, but it is not a trivial problem for
artificial agents to solve [1]. The challenges of object navi-
gation include achieving sub-goals, such as object recogni-
tion [2] and scene memorization [2]. An agent needs to nav-
igate, discover objects, and memorize scenes while keeping
track of its location. Recent advances in deep reinforcement
learning have given rise to end-to-end RL agents that can
conduct semantic navigation tasks using raw RGB images
[10, 9]. However, these end-to-end systems require large
neural networks with a significant amount of training steps.
Additionally, the policies learned by these systems are dis-
tributed among its weights, which make transfer learning

difficult [11]. In contrast, symbolic approaches, such as au-
tomated planning, can easily solve most object navigation
tasks given a discrete environment.[8] The problem with
symbolic approaches is that they requirement explicit de-
fined symbols to represent environmental information.

We approach object navigation with a neural-symbolic
method; taking raw RGB images as input and construct-
ing a spatial memory graph containing both location and
object information. The learned graph can be searched us-
ing any graph search algorithm. We demonstrate that our
neural-symbolic approach is very sample efficient, and the
object navigation is almost trivial once the graph is con-
structed after some exploration. This work also builds the
foundation for applying neural-symbolic methods to com-
plex long-horizon tasks for embodied agent reasoning.

2. Approach
To tackle the object navigation problem, our agent needs

both a visual perception module and a memory unit. The
proposed method has two major components: an object de-
tection neural network and a spatial graph constructor. We
chose to use YOLO [7] as our object detection method for
its speed and simplicity. The graph is constructed using the
Networkx library [4]. The nodes of the graph are the lo-
cation and orientation of the agent, and the edges represent
the possible movements. We use bidirected graphs to dis-
tinguish movement in opposite directions. Our agent uses
object detection to gather object information from raw RGB
images, and stores this information in the spatial graph as a
simple lookup. With both modules, our agent can navigate
to any object that has previously been discovered.

2.1. Object Detection

Our object detection method is based on YOLO [7]. It
takes a raw image as input and outputs detected objects dis-
tribution with bounding boxes. Compared to two-step meth-
ods, such as RCNN [5], it is faster to train and easier to de-
ploy. We artificially generated a dataset containing our test
objects with random configurations in AI2-THOR. To en-
sure generalizability, the training object configurations are
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Figure 1. Example of a Learned Spatial Memory Graph

not present in the graph construction phase.

2.2. Spatial Graph Generation

The spatial graph serves as the “memory” of the agent
during exploration. We encode location as the key for each
node and visual observations as values. The edges are ac-
tions taken by an agent. The four actions we included
are MOVEAHEAD, MOVEBACK, TURNLEFT and TURN-
RIGHT. The movement actions have a step size of 0.25
while the turning actions have a turn angle of 90◦. We gave
the agent a budget of 1000 steps to explore. For each obser-
vation, the probability of whether an object is present is cal-
culated using YOLO. To make exploration more efficient,
we implemented a queue to store locations visited. We also
adopted a breadth search algorithm to facilitate exploration.
The learned graph can be searched using any graph based al-
gorithm for finding the optimal path. We used Dijkstra’s al-
gorithm for path planning as the default method [3]. We tra-
versed through five environments to generate spatial graphs.
An example of a generated graph is shown in Figure 1. On
average, each graph has around 1231 nodes. However, only
around 20 nodes have reachable objects. We setup a ran-
dom walk agent to compare with our neural-symbolic agent.
This random walk agent has equal probability of choosing
each of the four actions.

3. Experiments

We use the AI2-THOR environment [6] to evaluate both
training and testing environments. Our experiments in-
clude three object categories in a virtual kitchen environ-
ment. We choose seven different random location configu-
ration for each object. Five of the configurations are used
to conduct our experiments while the rest are used for train-
ing the YOLO classifier. We evaluated our approach using
two criteria: the success rate and the average path length.

Average Length Success Rate
NS Agent 23 100%
Random Walk 2328 23.8%
Optimal 19 100%

Table 1. Summary of Object Navigation Results

We define success rate as the percentage of successful runs
where our agent is able to find the target. The average path
length is defined as the number of actions our agent needs
to find a particular object. For baseline, we compared our
agent against a random walk agent with uniform distribu-
tion among available actions. The experiments are repeated
five times, and the average is calculated.

4. Results
Table 1 summarizes the results of our overall object nav-

igation task. Our approach is able to conduct the object nav-
igation task perfectly in all five settings. Our test results on
the path length also confirm the effectiveness of our neural-
symbolic method. The average length is 23 actions, which
is slightly more than the 19 optimal lengths. Our method is
reaching the optimal theatrical limit, which would require
significantly more data and training steps in end-to-end RL
approaches. Comparing our results to random walk, we can
see a drastic improvement. An agent randomly searching in
an environment with a given movement budget of 2000 can
find an object 23.8% of the time. The average length for
Random Walk agent is 2328, which takes 101 times more
actions on average than our agent. Our results demonstrate
a great deal of promise in using neural-symbolic approaches
for the embodied agent setting.

5. Conclusion and Future Work
We outlined a neural-symbolic method for discretized

object navigation tasks in the AI2-THOR environment. We
adopted a YOLO-based object recognition network and in-
tegrated it with a spatial graph memory. The results demon-
strate that our method can perform near-perfect object nav-
igation tasks in a simple kitchen environment. Our neural-
symbolic method is comparable with the optimal solution,
and is significantly better than a random walk baseline. We
demonstrated the effectiveness of a hybrid approach and
have shown the importance of integrating neural networks
with a symbolic reasoning engine.

One future direction is to solve more complex tasks that
require higher level reasoning. Tasks such as rearranging
items in a room, cooking according to a recipe are currently
challenging problems for end-to-end neural networks [8].
We hypothesize that by converting a visual environment to
a symbolic representation, we can perform the high-level
cognitive tasks using optimized logical reasoning systems.
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