
Agent with the Big Picture: Perceiving Surroundings for
Interactive Instruction Following

Byeonghwi Kim
GIST

byeonghwikim@gm.gist.ac.kr

Suvaansh Bhambri
GIST

sbhambri@ee.iitr.ac.in

Kunal Pratap Singh
Allen Institute for AI
kunals@allenai.org

Roozbeh Mottaghi
Allen Institute for AI
roozbehm@allenai.org

Jonghyun Choi
GIST

jhc@gist.ac.kr

1. Introduction

We address the interactive instruction following task [4,
9, 8] which requires an agent to navigate through an envi-
ronment, interact with objects, and complete long-horizon
tasks, following natural language instructions with egocen-
tric vision. To successfully achieve a goal in the interactive
instruction following task, the agent should infer a sequence
of actions and object interactions.

When performing actions, a small field of view often
limits the agent’s understanding of an environment, leading
to poor performance. Here, we propose to exploit surround-
ing views by additional observations from navigable direc-
tions to enlarge the field of view of the agent. In addition
to the ample observations, while action prediction requires
global semantic cues, object localization needs a pixel-level
understanding of the environment, making them semanti-
cally different tasks. Thus, we design a model factorizing
interactive perception and action policy in separate streams
in a unified end-to-end framework. The proposed method
outperforms the previous challenge winner method [7].

2. Model

The two streams of our model are for action prediction
with Action Policy Module (APM) and object localization
with Interactive Perception Module (IPM), respectively.

2.1. Interactive Perception Module (IPM)

First, the language encoder in IPM encodes the instruc-
tions and generates attended language features. For ground-
ing the visual features to the language features, we use lan-
guage guided dynamic filters to generate the attended visual
features as ht,m = LSTMm([v̂t,m; x̂t,m; at−1]), where [;]
denote concatenation, x̂t,m and v̂t,m the attended language
and visual features, and at−1 the previous action. The class
decoder’s hidden state ht,m is used to predict the mask mt.

Proposed Factorized Model

"Candle"

Single Stream

Po
lic

y

PICKOBJECT

Pe
rc

ep
tio

n
Pe

rc
ep

tio
n

&
 P

ol
ic

y

Action Pred.

Current Frames
Text

Instruction

Object Local.

PICKOBJECT

PICKOBJECT

Task: Put a candle on the back of a toilet.

Success

Fail

Surrounding Views

Figure 1: Our model exploits surrounding views and factorizes
perception and policy in separate branches. Each heat-map indi-
cates where a stream focuses on in the given visual observation.

Language Guided Dynamic Filters. Visual grounding
helps the agent to exploit the relationships between lan-
guage and visual features. Specifically, the filter generator,
fDF , takes the language features, x, and producesNDF dy-
namic filters. These filters convolve with the visual features,
vt, to output multiple joint embeddings, v̂t = DF(vt, x), as:

wi = fDF i
(x), i ∈ [1, NDF],

v̂i,t = vt ∗ wi,

v̂t = [v̂1,t; . . . ; v̂NDF ,t],

(1)

where NDF , ∗ and [;] denote the number of dynamic filters,
convolution and concatenation operation respectively.

For richer information, we additionally gather visual
features, v1t , v2t , v3t , and v4t , from four navigation ac-
tions (i.e., left, right, up, and down) including the ego-
centric visual feature, v0t , for each time step. The at-
tended visual feature, vt,m, is then comprised of the at-
tended visual feature from each direction as v̂t,m =
[fDF (v

0
t , x̂t,m); · · · ; fDF (v

4
t , x̂t,m)]. Note that our method

is not limited to the additional features.

1

Object-Centric Localization. We bifurcate the task of
mask prediction; target class prediction and instance asso-
ciation. This enables us to leverage the quality of pretrained
instance segmentation models with accurate localization.

Target Class Prediction. Our agent first predicts the tar-
get object class, ct, that it intends to interact with at the
current time step t, as ct = argmaxk FCm(ht,m), k ∈
[1, Nclass], where FCm(·) is a fully connected layer and
Nclass denotes the number of the classes of a target object.

Instance Association. When interacting with an object
through multiple time steps, it is possible for its appear-
ance to drastically change, causing low confidences of the
object’s masks. To address such scenarios, we propose a
criterion to select the best instance mask. Specifically, the
agent predicts the current time step’s maskmt = mî,ct

with
the corresponding center coordinate, d∗t = dî,ct , where î is:

î =

 argmax
i

si,ct , if ct 6= ct−1

argmin
i

||di,ct − d∗t−1||2. if ct = ct−1
(2)

Here, di,ct and si,ct denote the center and the confidence
score of a mask instance, mi,ct , of the predicted class, ct.

2.2. Action Policy Module (APM)

Same as IPM, we employ the language guided dynamic
filters for generating attended visual features. Although we
use a similar architecture for IPM, the information captured
by dynamic filters is different from that of IPM due to dif-
ferent predictions and hence losses as Equation 3,

ua = [v̂t,a; x̂t,a; at−1], ht,a = LSTMa(ua)

at = argmax
k

(FCa([ua;ht,a]). k ∈ [1, Naction]
(3)

where v̂t,a, x̂t,a and at−1 denote attended visual features,
attended language features, and previous action embedding,
respectively. FCa, takes as input v̂t,a, x̂t,a, at−1, and ht,a
and predicts the next action, at. Note Naction denotes the
number of actions.

Obstruction Evasion. To address unanticipated situa-
tions such as obstacles during inference, we propose an
‘obstruction evasion’ mechanism in the APM. While nav-
igating in the environment, at every time step, the agent
computes the distance between visual features at the cur-
rent time step, vt, and the previous time step, vt−1 with a
tolerance hyper-parameter ε as following:

d(vt−1, vt) < ε, (4)

where d(vt−1, vt) = ||vt−1 − vt||22. When this equation
holds, the agent removes the action that causes the obstruc-
tion from the action space so that it can escape.

Split Model Seen Unseen
Task Goal-Cond Task Goal-Cond

Val.
Shridhar et al. [8] 4.00 (2.10) 10.50 (7.20) 0.20 (0.10) 7.50 (5.10)
LWIT [7] 33.70 (28.40) 43.10 (38.00) 9.70 (7.30) 23.10 (18.10)
Ours (ABP) 42.93 (3.84) 50.45 (4.76) 12.55 (1.05) 25.19 (2.25)

Test

Shridhar et al. [8] 3.98 (2.02) 9.42 (6.27) 0.39 (0.08) 7.03 (4.26)
LWIT [7] 29.16 (24.67) 38.82 (34.85) 8.37 (5.06) 19.13 (14.81)
LWIT [7]∗ 30.92 (25.90) 40.53 (36.76) 9.42 (5.60) 20.91 (16.34)
Ours (ABP) 44.55 (3.88) 51.13 (4.92) 15.43 (1.08) 24.76 (2.22)

Table 1: Task and Goal-Cond. Success Rate. PLW metrics are
in parentheses. * denotes the result only on the leaderboard.

Infinite-Loop Evasion. Even though the agent does not
encounter the immovable objects, the agent could get stuck
in ‘infinite-loop’ states. Inspired by [3], we adopt an exter-
nal memory to detect such states. Given the history of visual
observations, the agent recognizes the current state as infi-
nite loop if the history contains the two same sub-sequences
at least and randomly turns left or tight.

3. Experiments
Dataset and Metrics. To train and evaluate our model on
the interactive instruction following task, we use the AL-
FRED benchmark that runs in AI2-THOR [6]. The scenes
in ALFRED are divided into ‘train’, ‘validation’ and ‘test’
sets. We follow the evaluation metrics proposed in [8] (i.e.,
Success Rate denoted by Task and Goal Condition Success
Rate denoted by Goal-Cond). Additionally, to measure the
efficiency of an agent, the above metrics are penalized by
the length of the path, denoted by a path-length-weighted
(PLW) score for each metric [1].

Implementation Details. The egocentric visual observa-
tions are resized to 224 × 224. For the visual encoder, we
use a pre-trained ResNet-18 [5]. For the experimental re-
sults, we use the goal statement as input for the IPM and
step-by-step instructions for the APM. The model is trained
end-to-end using Adam for 30 epochs with an initial learn-
ing rate of 10−3 with a batch size of 16. We augment visual
features by shuffling the channel order of each image and
applying image operations following [2].

Results. As shown in the Table 1, the proposed method
with surrounding perception outperforms the previous chal-
lenge winner [7] on all “Task” and “Goal-Cond” metrics in
seen and unseen environments for both validation and test
splits by large absolute margins.

4. Conclusion
We explore the problem of interactive instruction follow-

ing. To address this compositional task, we propose a model
that exploits surrounding views and factorizes the task into
two streams, interactive perception and action policy, fol-
lowed by improved components for object localization and
obstacle avoidance. Our method provides a framework that
can be adopted by future works on ALFRED and beyond.

2

References
[1] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir R. Zamir. On evaluation of embodied navigation
agents. arXiv:1807.06757, 2018. 2

[2] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-
sudevan, and Quoc V. Le. Autoaugment: Learning augmenta-
tion policies from data. In CVPR, 2019. 2

[3] Heming Du, Xin Yu, and Liang Zheng. Learning object rela-
tion graph and tentative policy for visual navigation. In ECCV,
2020. 2

[4] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari,
Joseph Redmon, Dieter Fox, and Ali Farhadi. Iqa: Visual
question answering in interactive environments. In CVPR,
2018. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
2

[6] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D
Environment for Visual AI. arXiv:1712.05474, 2017. 2

[7] Van-Quang Nguyen, Masanori Suganuma, and Takayuki
Okatani. Look wide and interpret twice: Improv-
ing performance on interactive instruction-following tasks.
arXiv:2106.00596, 2021. 1, 2

[8] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan
Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and
Dieter Fox. Alfred: A benchmark for interpreting grounded
instructions for everyday tasks. In CVPR, 2020. 1, 2

[9] Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox, Li Fei-Fei,
Abhinav Gupta, Roozbeh Mottaghi, and Ali Farhadi. Visual
semantic planning using deep successor representations. In
ICCV, 2017. 1

3

