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Abstract

With the rise of automation, unmanned vehicles became
a hot topic both as commercial products and as a scien-
tific research topic. It composes a multi-disciplinary field of
robotics that encompasses embedded systems, control the-
ory, path planning, Simultaneous Localization and Map-
ping (SLAM), scene reconstruction, and pattern recogni-
tion. In this work, we present our exploratory research of
how sensor data fusion and state-of-the-art machine learn-
ing algorithms can perform the Embodied Artificial Intelli-
gence (E-AI) task called Visual Semantic Navigation. This
task, a.k.a Object-Goal Navigation (ObjectNav) consists
of autonomous navigation using egocentric visual obser-
vations to reach an object belonging to the target seman-
tic class without prior knowledge of the environment. Our
method reached fourth place on the Habitat Challenge 2021
ObjectNav on the Minival phase and the Test-Standard
Phase.

1. Proposed Work

The first step is to perform semantic segmentation on the
egocentric RGB observation at step t. In our work, we use
the Yolact++ architecture for this task [1]. We used trans-
fer learning to fine-tune the neural network to the 21 classes
on the Habitat challenge 2021 Object-Goal Navigation (Ob-
jectNav). Those 21 classes are a subset of the original 40
classes of the Matterport3D dataset [2].

The confidence threshold for the pixel-wise prediction
chosen was empirically set to 0.55. The source code for our
method is publicly available at 1. The semantic prediction is
then projected to a 2D top-view map using the depth image
at step t and the GPS and Compass sensors measurements
available at step t. The former provides the current agent’s
position in an episodic-based coordinate system, where the
agent always starts at the origin regardless of its spawning

1https://github.com/VRI-UFPR/BeyondSight/tree/
beyond_habitat_challenge_2021

world coordinates. The latter provide the agent’s yaw ori-
entation in radians in an episodic coordinate system, where
the starting orientation is always 0.

We chose a squared map representation of 512x512 cells,
where each squared cell has a 0.05 meter resolution on
world scale. The map has 25 channels, where channel 0
represents obstacles observed by the depth camera without a
semantic class. Channels 1 to 21 are dedicated to represent-
ing the Habitat challenge 2021 ObjectNav classes. Channel
22 is a max-pooling of all previous channels to provide an
occupation map regardless of class. Channel 23 contains all
the agent’s locations starting from step 0. Channel 24 con-
tains only the agent’s current location. This map is centered
cropped around the agent’s current location to 25x256x256,
and padded with zeros if necessary, and then fed along with
the current episode target class ID and agent’s current ori-
entation to our policy neural network named BEyond.

BEyond follows an Actor-Critic architecture and was
trained using Deep Reinforcement Learning (Deep-RL) on
the Habitat Simulator [6] for around 1 million steps using
the Proximal Policy Optimization (PPO) algorithm [7]. The
proposed architecture was inspired by [5]. We processed
it in a single GPU, an NVIDIA Titan XP. Our policy net-
work operates akin to a global planner instead of a local
planner, meaning that it does not output discrete actions to
be used on the subsequent step of the simulation. Instead, it
provides as output two continuous coordinates. These coor-
dinates are samples from a Gaussian distribution described
by the actor head layer and auxiliary learned parameters.
The predictions are normalized to the range [0, 1] using a
sigmoid function. The flowchart of our method is presented
in Figure 1. We tested two approaches of representation for
these coordinates: Cartesian and Polar.

1.1. Cartesian

The prediction is multiplied by the map’s size, then
rounded to an integer, representing the agent’s current
global goal in cell coordinates. Next, the local goal is com-
puted using the A∗ algorithm to the closest non-obstruct
step toward the goal using channel 22. This local goal is
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Figure 1. BEyond flowchart. In green is the resulting pose using GPS and Compass data provided by the simulation. In blue are the
Compass value, RGB, and depth images observed at step t. In gray the target class ID provided by the episode’s settings. In purple are
the module that creates the top-down semantic map, our policy neural network that performs the global goal prediction and the subsequent
transformation to episodic polar coordinates. In red is the output containing the predicted action.

transformed to episodic polar coordinates and fed into a dif-
ferent pre-trained actor-critic network that acts as a local
planner. This network receives an RGB-D image and the
local goal as input and outputs a discrete action within the
possible ones (STOP, MOVE FORWARD, TURN LEFT,
TURN RIGHT). This decoupling into two modules, global
planner and local planner, allows each component to be eas-
ily replaced by another method.

1.2. Polar

In this representation, the first coordinate represents the
distance ρ to the target, and the second coordinate the ori-
entation φ. The latter is transformed from the [0,1] range to
the [−π,+π] range. The global goal is then fed to the same
local planner as the Cartesian one.

The local planner was trained using the Decentral-
ized Distributed Proximal Policy Optimization (DD-PPO)
method [8], and it is the same for both cases.

2. Reward Function
In Deep-RL the reward function is essential for learning.

We use −10−4 as the default value for a step, and 10−3 if
the policy action induced the local planner to take the same
discrete action as a greedy oracle with perfect knowledge
about the scene. Previous distance to goal minus the cur-
rent one is another component, and finally, if the episode
ended in success, an additional 2.5 (10 times the step size
of forward movements) value is added to the reward. This
avoids sparse rewards and introduces an imitation learning
coefficient in the reward.

3. Habitat Challenge 2021
We submitted the variant of our method that uses the

Cartesian representation to the Habitat Challenge 2021 in

the ObjectNav category Minival phase, see Table 1. Addi-
tionally, the variant that uses the Polar representation was
submitted to the Test-Standard phase, see Table 2.

Rank Team SPL ↑ SoftSPL ↑ Distance to goal ↓ Success rate↑
1 TreasureHunt 0.15 0.25 3.41 0.27
2 AIstar (RL) 0.09 0.16 3.32 0.23
3 Clueless-Wanderers (Peter) 0.03 0.10 4.41 0.13
4 BEyond-VRI-UFPR 0.00 0.14 5.71 0.00
5 See through pixels (init) 0.00 0.00 6.39 0.00
6 Black Swan 0.00 0.01 6.38 0.00

Table 1. Habitat Challenge 2021: ObjectNav Leaderboard Minival
Phase, ranked by SPL [3].

Rank Team SPL ↑ SoftSPL ↑ Distance to goal ↓ Success rate↑
1 TreasureHunt 0.09 0.17 9.23 0.21
2 AIstar (RL) 0.03 0.11 9.41 0.10
3 Clueless-Wanderers (Peter) 0.02 0.10 9.07 0.07
4 BEyond-VRI-UFPR 0.00 0.08 10.18 0.00
5 Habitat Team (RGBD+DD-PPO) 0.00 0.01 10.33 0.00

Table 2. Habitat Challenge 2021: ObjectNav Leaderboard Test-
Standard Phase, ranked by SPL [4]. Habitat Team (RGBD+DD-
PPO) is the baseline.

The version with the Polar representation had similar re-
sults on the Minival phase obtaining (‘spl’: 0.0, ‘softspl’:
0.12, ‘distance to goal’: 5.75, ‘success rate’: 0.0).

4. Conclusion

We achieved fourth place on the Minival phase and Test-
Standard phase, marking our method as a promising ap-
proach for dealing with ObjectNav, but with a large room
for future improvements. The main aspects of our method
are: the use of semantic segmentation, the projection to a
top-down semantic 2D grid, the decoupled global and local
planner, and the modified reward function combining rein-
forcement and imitation learning.
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