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Abstract

Intelligent agents for visual room rearrangement aim to
reach a goal room configuration from a cluttered room con-
figuration via a sequence of interactions. For successful
visual room rearrangement, the agents need to learn to ex-
plore, navigate and interact within the surrounding environ-
ments. Contemporary methods for visual room rearrange-
ment display unsatisfactory performance even with state-
of-the-art techniques for embodied AI. One of the causes
for the low performance arises from the expensive cost
of learning in an end-to-end manner. To overcome the
limitation, we design a three-phased modular architecture
(TMA) for visual room rearrangement. TMA performs vi-
sual room rearrangement in three phases: the exploration
phase, the inspection phase, and the rearrangement phase.
The proposed TMA maximizes the performance by plac-
ing the learning modules along with hand-crafted feature
engineering modules—retaining the advantage of learning
while reducing the cost of learning.

1. Introduction

Embodied AI studies learning of embodied physical in-
teractions with surrounding environments such as visual
navigation and embodied question answering [4]. Recently,
tasks involving direct physical interaction with objects are
drawing increasing attention [1]. Tasks that involve interac-
tion with objects in environments include the visual room
rearrangement task [9]. Intelligent agents for visual room
rearrangement perform a series of interactions with objects
in a cluttered environment to attain a goal state of the en-
vironment. Successful visual room rearrangement requires
the agents to efficiently explore and navigate through the
environment, and effectively recognize and manipulate the
objects in the environment.

Formulating visual room arrangement as an end-to-end
learning problem is straightforward, but such an approach
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likely suffers from the expensive cost of pure learning [3].
To cope with the high cost of pure learning, the previous
work has relied on the imitation learning [6] only to de-
mand millions of experience and to display unsatisfactory
performance [9].

To overcome the limitations mentioned above, we pro-
pose a three-phased modular architecture (TMA) for the vi-
sual room rearrangement task. The proposed TMA locates
the learning modules along with hand-crafted feature pro-
cessing modules. This modular design retains the advantage
of learning, reduces the cost of learning, and maximizes
the performance since learning modules focus on high-level
tasks and the hand-crafted feature processing modules sup-
port the learning modules with expert knowledge.

TMA conducts visual room rearrangement in three
phases: the exploration phase, the inspection phase, and the
rearrangement phase. In the exploration phase, the embod-
ied agent explores and navigates through an unseen envi-
ronment in its goal configuration. As a result, the agent ob-
tains a semantic map of the environment. In the inspection
phase, the agent once again navigates through the environ-
ment in its cluttered configuration given the constructed se-
mantic map. Then, the agent obtains another semantic map
of the environment. In the rearrangement phase, the agent
compares the two semantic maps, plans the rearrangement
process, and performs the rearrangement task.

2. Method

2.1. Exploration Phase

In the exploration phase, the embodied agent walks
through an unseen environment in its goal configuration and
obtains a semantic metric map.

Semantic Metric Map. We define the semantic metric
map as a K × M × M matrix where M × M denotes the
map size and K = 4+C represents an obstacle map, the ex-
plored area, the current agent location, the past agent loca-
tions, and C categories of semantics. We initialize the map
with all zeros at the beginning of the phase and the agent
stores the collected information regarding the environment
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in the map throughout the phase. We make an assumption
that the agent starts exploration at the center of the map.

Exploration and Navigation. The agent iterates the
process of predicting one long-term goal and a sequence
of short-term goals for reaching the long-term goal multiple
times to explore and navigate through the environment. For
this, the agent utilizes two modules: a long-term goal pol-
icy module (LGPM) and a short-term goal planner module
(SGPM). The agent first set a long-term goal with LGPM.
LGPM receives the current semantic metric map and pre-
dicts a long-term goal using a convolutional neural network.
LGPM is a learning module, and we train it using reinforce-
ment learning [7] with reward proportional to the increase
in coverage of the semantic map and decrease in the total
time spent.

Next, SGPM provides a sequence of short-term goals
with corresponding actions for reaching the long-term goal.
SGPM uses the fast marching method [8] to compute the
shortest path from the current location to the long-term goal
and heuristics to determine the actions to realize the short-
est path. This planning module does not require any training
process so that it dramatically reduces the total number of
parameters to learn.

2.2. Inspection Phase

In the inspection phase, the agent once again navigates
through the environment in a cluttered configuration given
the constructed semantic map from the exploration phase.
After the navigation, the agent obtains another semantic
metric map of the environment in its cluttered configura-
tion. The agent uses the pair of two resulting semantic met-
ric maps in the rearrangement phase.

For navigation in the inspection phase, the agent utilizes
LGPM and SGPM as well. However, we learn another set
of LGPM parameters that suit the purpose of the inspection
phase. Since the purpose of the inspection phase is rapidly
obtaining a semantic map of the known environment in a
different state, the agent would exploit the collected knowl-
edge in the prior phase rather than trying to explore. Thus,
we put more weight on the time saving when calculating the
reward.

2.3. Rearrangement Phase

Change Detection. In the rearrangement phase, the
agent first detects changes between the goal configuration
and the cluttered configuration by comparing the two se-
mantic maps. The changes include the location and state
of objects. A simple comparison of the pair of semantic
maps would not result in successful change detection due
to imperfect object detection. To deal with imperfect ob-
ject detection, we identify the same objects in two semantic
maps using the following metric:

d = wclass · sclass + wclass · ssize, (1)

Table 1. Experiment results on the three data splits.

Split Success %Fixed %E %Misplaced

Train 0.5 1.0 1.01 1.00
Val. 0.0 0.9 1.00 1.00
Test 0.1 0.6 1.01 1.01

where sclass and ssize denote the class label similarity and the
size similarity, wclass and wsize are the weights for the sim-
ilarities and wclass + wsize = 1. We compute the class sim-
ilarity using the distance between the corresponding word
vectors [2] and the size similarity using L2-norm.

Planning. After detecting the changes, the agent plans
the rearrangement process. The planning process deter-
mines the order of rearranging each object which is opti-
mal in respect of time complexity. For N matched objects
from change detection, the agent evaluates N ! permutations
of orders and selects the optimal order. Since the maximum
number of different objects are 5 in our problem setting [9],
this exhaustive search guarantees affordable computational
and time complexities.

Rearrangement. Finally, the agent performs the rear-
rangement task based on the resulting plan: the agent rear-
ranges the objects in the given order (plan). For rearranging
each object, the agent utilizes the A∗ path planner [10] to
plan the path and a sequence of actions.

3. Evaluation
3.1. Settings

We use the visual room rearrangement dataset and the
evaluation protocol provided by the 2021 AI2-THOR Re-
arrangement Challenge hosted at the CVPR 2021 Embod-
ied AI Workshop [9]. The dataset consists of 6,000 unique
rearrangement scenarios (4,000/1,000/1,000 for train, vali-
dation and test, respectively) in 120 rooms of AI2-THOR
[5]. Moreover, the performance metrics include Success,
%Fixed, %Energy Remaining and %Misplaced.

3.2. Results

Table 1 displays the experiment results on the three data
splits. The proposed TMA shows moderate performance in
visual room rearrangement. However, the performance gap
between the current model and the performance for practi-
cal home service agents is still substantial.

4. Conclusion
In this work, we proposed a three-phased modular ar-

chitecture (TMA) for visual room rearrangement. The pro-
posed TMA alleviates the high cost of end-to-end learning
approaches with a modular design. TMA retains the advan-
tage of learning and reduces the cost of learning by plac-
ing the learning modules along with hand-crafted feature
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processing modules. TMA performs the visual room rear-
rangement task in three phases: the exploration phase, the
inspection phase, and the rearrangement phase. We expect
the proposed TMA would let the embodied AI research take
one step forward towards intelligent agents realizing practi-
cal services for humans by interacting with the surrounding
in an effective manner.
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