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Abstract

The success of deep learning in robotics hinges on the
availability of physically accurate virtual training environ-
ments and simulation tools that accelerate learning by scal-
ing to many parallel instances. However, most current Al
frameworks do not integrate easily with common software
stacks from robotics, while fully-fledged robot simulators
lack capabilities for parallelization. In this paper, we in-
troduce an extension for the Neurorobotics Platform of the
Human Brain Project (HBP) that offers the full feature set
of a robot simulator and at the same time is arbitrarily scal-
able for massively parallel robotics experiments.

1. Introduction

With the widespread adoption of deep learning in
robotics, training environments have gained increasing rel-
evance because the experience of an embodied agent can
only be obtained through active interaction with the world
around it. Gathering the required data on physical robots is
costly, slow, and potentially unsafe, which makes simula-
tors essential. In particular, research on deep reinforcement
learning has recently fostered the development of virtual
training environments for challenging tasks ranging from
computer games to object manipulation. They are typi-
cally centered around ready-to-use setups with lightweight
programming interfaces that are tailored to the require-
ments of machine learning applications. Some of them can
even spawn multiple instances to parallelize training. Of-
ten missing, however, are key features of robot simulators
such as modeling tools for creating new setups, extensions
for different sensor models, and interfaces for commonly
used tools in robotics. Even though some training environ-
ments support a subset of these features such as URDF and
ROS interfaces, none of them meets all needs of robotics re-
search. Conversely, current robot simulators offer only lim-
ited support for machine learning applications, especially in
terms of parallelization.

In the following, we present a new cloud-based simula-
tion framework that combines the ease of use and scalability

of virtual training environments from machine learning with
the full feature set of a robot simulator. It is based on the
Neurorobotics Platform (NRP) [2] developed in the HBP [ 1]
and supports massively parallel simulations for applications
in Al and neuroscience on both cloud and high performance
computing platforms. Section 2 outlines the NRP’s core
features and system architecture. In section 3, we introduce
an extension for massively parallel distributed simulations
that has been successfully applied to a robot grasping setup
described in section 4. Section 5 concludes the text and pro-
vides an outlook to future work.

2. The HBP Neurorobotics Platform

The NRP is a cloud-based simulation framework for neu-
roscience, neuromorphic engineering, robotics and embod-
ied Al At its core is the so-called Closed-Loop Engine
(CLE) that connects a physics-based environment simula-
tion to any type of algorithm or cognitive model, rang-
ing from data-driven brain simulations for virtual neuro-
science to artificial neural networks for deep reinforcement
learning. The current version (3.1) of the NRP is based
on the open-source robot simulator Gazebo, but future re-
leases will provide generic interfaces for easily integrating
other simulation engines. There is further built-in support
for spiking neural network simulators such as NEST and
Nengo. Deep learning tool kits like TensorFlow or PyTorch
can be directly accessed through their Python-based APIs.
This makes the NRP one of the only tools that combines a
fully-fledged robot simulator with broad support for various
machine learning frameworks.

A unique feature of the NRP is that its system architec-
ture was designed from the ground up to support deploy-
ment in the cloud and high performance computing envi-
ronments. It is split into a front end that manages mul-
tiple back ends where the actual simulations are running.
Both components are packaged as Docker images for seam-
less deployment. Users can access the front end through a
web interface or from Python to create, manage, visualize
and evaluate experiments, i.e. full specifications of simu-
lation tasks including robots, environments, models and al-
gorithms. Active experiments run independently from each
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Figure 1. Extended NRP system architecture for massively parallel data collection and training.

other on the back ends, which is an important prerequisite
for parallelization.

Its cloud-optimized architecture makes the NRP distinct
from Gym-Ignition [3] and RLBench [4], which also pro-
vide virtual training environments based on robot simula-
tors but no built-in cloud support. The web interfaces and
services implemented by the front end and back end com-
ponents also go beyond the feature set of AWS RoboMaker,
which only provides Gazebo’s standard user interface and
is limited to AWS clusters.

3. Massively Parallel NRP Experiments

The NRP’s default architecture outlined above supports
the execution of an arbitrary number of experiments in par-
allel but does not provide a common context for data shar-
ing and interactions between them. To enable the acceler-
ated collection of data sets on many concurrent simulations
or distributed training with possibly hundreds of workers,
we have extended the NRP as depicted in figure 1. In addi-
tion to the standard NRP Docker images for front end and
back end, there are additional services for central back end-
accessible data storage (object storage, database) and anal-
ysis (database GUI, dashboard). The data base is used to
both distribute experiment parameters to all back ends and
to store meta information of e.g. training samples that re-
side in the object storage. If required, simulation models
and experiment definitions can be stored locally on every
back end to avoid bottlenecks.

4. A Task Environment for Robot Grasping

We have created an experiment setup for robot grasp-
ing tasks based on [5] to evaluate the NRP extension. It
is comprised of a KUKA LBR iiwa robot model placed in
front of a tray with space for objects and an RGB cam-
era that captures the workspace. Robot control is imple-
mented using common tools from the ROS software stack
(ros_control, Movelt). Like in other virtual training envi-
ronments, users can connect their machine learning models
through a new high-level Experiment API. Besides gather-

ing data and actuating the robot, it also supports loading
random user-defined objects, any number of which can be
placed anywhere in the scene. The data collected from this
setup can, for example, be used to train fully data-driven
controllers for grasping such as the one proposed in [5]. Im-
portantly, however, the proposed extension is not limited to
this use case and can be applied to any experiment running
in the NRP as long as it implements the required interfaces.

We have successfully applied the new NRP extension
to parallelize the sampling of robot grasps from this ex-
periment. Our tests were running on an OpenStack cluster
with more than 100 back end instances and we expect that
the system will also scale to considerably larger installa-
tions. While sampling performance for a single simulation
depends on the selection of objects in the tray, the over-
all speedup can be considered linear during the collection
of random grasp attempts where all simulations run asyn-
chronously. Scaling is in essence only limited by the per-
formance of the central data storage. Tests on a high perfor-
mance computer are already in preparation.

5. Conclusion and Outlook

We have introduced an extension to the NRP that enables
massively parallel experiments with a full-featured robot
simulator. To our knowledge, the NRP is the only virtual
training environment with a cloud-optimized architecture
and support for deployment on high performance comput-
ers. In this work, our focus was on the accelerated collection
of synthetic data sets. In the future, we plan to add services
for distributed reinforcement learning algorithms and to in-
clude support for alternative environment simulators that
will be provided by upcoming NRP releases. The NRP is
an open-source project and available on neurorobotics.ai.
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