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Abstract
People navigating in unfamiliar buildings take advan-

tage of myriad visual, spatial and semantic cues to effi-
ciently achieve their navigation goals. Towards equipping
computational agents with similar capabilities, we intro-
duce Pathdreamer, a visual world model for agents navigat-
ing in novel indoor environments. Given one or more previ-
ous visual observations, Pathdreamer generates plausible
high-resolution 360◦ visual observations (RGB, semantic
segmentation and depth) for viewpoints that have not been
visited, in buildings not seen during training. In regions of
high uncertainty (e.g. predicting around corners, imagining
the contents of an unseen room), Pathdreamer can predict
diverse scenes, allowing an agent to sample multiple realis-
tic outcomes for a given trajectory. In the downstream task
of Vision-and-Language Navigation (VLN), planning ahead
with Pathdreamer provides about half the benefit of looking
ahead at unobserved parts of the environment.

1. Introduction
World models [9], or models of environments [19], are

an appealing way to represent an agent’s knowledge about
its surroundings. An agent with a world model can predict
its future by ‘imagining’ the consequences of a series of
proposed actions. This capability can be used for sampling-
based planning [6, 14], learning policies directly from the
model (i.e., learning in a dream) [7, 9, 17, 10], and for coun-
terfactual reasoning [3]. Model-based approaches such as
these also typically improve the sample efficiency of deep
reinforcement learning [19, 15]. However, world models
that generate high-dimensional visual observations (i.e., im-
ages) have typically been restricted to relatively simple en-
vironments, such as Atari games [15] and tabletops [6].

Our goal is to develop a generic visual world model
for agents navigating in indoor environments. Specifically,
given one or more previous observations and a proposed
navigation action sequence, we aim to generate plausible
high-resolution visual observations for viewpoints that have
not been visited, and do so in buildings not seen during
training. Beyond applications in video editing and content
creation, solving this problem would unlock model-based
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Figure 1: Generating photorealistic 360◦ visual observa-
tions from an imagined 6.3m trajectory in a previously un-
seen building. Observations also include depth and segmen-
tations (not shown here).

methods for many embodied AI tasks, including navigating
to objects [2], instruction-guided navigation [1, 18, 12] and
dialog-guided navigation [20, 11]. For example, an agent
asked to find a certain type of object in a novel building,
e.g. ‘find a chair’, could perform mental simulations using
the world model to identify navigation trajectories that are
most likely to include chair observations – without moving.

Building such a model is challenging. It requires syn-
thesizing completions of partially visible objects, using as
few as one previous observation. This is akin to novel view
synthesis from a single image [8, 21], but with potentially
unbounded viewpoint changes. There is also the related but
considerably more extreme challenge of predicting around
corners. For example, as shown in Figure 1, any future nav-
igation trajectory passing the entrance of an unseen room
requires the model to plausibly imagine the entire contents
of that room (we dub this the room reveal problem). This
requires generalizing from the visual, spatial and seman-
tic structure of previously explored environments—which
in our case are photo-realistic 3D captures of real indoor
spaces in the Matterport3D dataset [4]. A third problem
is temporal consistency: predictions of unseen building re-
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Figure 2: Given a history of visual observations (RGB, depth and semantics) and a trajectory of future viewpoints, the
Structure Generator conditions on a sampled noise tensor before generating semantic and depth outputs to provide a high-
level structural representation. Realistic RGB images are synthesized by the Image Generator in the second stage.
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Figure 3: When predicting around corners, the Structure Generator can sample diverse and semantically plausible scene
layouts which are closely reflected in the RGB output of the Image Generator, shown here for an example input (left column;
unseen areas are indicated by solid black regions). Three alternative room reveals and the groundtruth are shown.

gions should ideally be stochastic (capturing the full distri-
bution of possible outcomes), but revisited regions should
be rendered in a consistent manner to previous observations.

2. Pathdreamer
Towards this goal, we introduce Pathdreamer– a world

model that generates high-resolution visual observations
from a trajectory of future viewpoints in buildings it has
never observed. Given one or more visual observations
(consisting of RGB, depth and semantic segmentation for
panoramas), Pathdreamer synthesizes high-resolution vi-
sual observations along a trajectory through future view-
points using a hierarchical two-stage approach (Figure 2).

Pathdreamer’s first stage, Structure Generator, gener-
ates depth and semantic segmentations. Inspired by work
in video prediction [5], these outputs are conditioned on
a latent noise tensor capturing the stochastic information
about the next observation (such as the layout of an un-
seen room) that cannot be predicted deterministically. The
second stage’s Image Generator renders the depth and se-
mantic segmentations as realistic RGB images using mod-
ified Multi-SPADE blocks [16, 13]. To maintain long-term
consistency in the generated observations, both stages use
back-projected 3D point cloud representations which are re-
projected into image space for context [13]. We assume that

the future trajectory may traverse unseen areas of environ-
ment, requiring the model to not only in-fill minor object
dis-occlusions, but also to imagine diverse outputs for entire
room reveals (Figure 3). Note that we generate depth and
segmentation because these modalities are useful in many
downstream tasks, and modeling them improves the quality
of the RGB outputs. As illustrated in Figure 1, Pathdreamer
can generate plausible views of previously unseen scenes
under large viewpoint changes, while also addressing the
room reveal problem – in this case correctly hypothesizing
that a room resembling a kitchen at position 2.

Empirically, using the Matterport3D dataset [4] and 360◦

observations, we evaluate both stages of our model against
prior work and reasonable baselines and ablations. We find
that the hierarchical structure of the model is essential for
predicting over large viewpoint changes, that maintaining
both RGB and semantic context is required, and that predic-
tion quality degrades gradually when we evaluate with tra-
jectory rollouts of up to 13m. Finally, we evaluate whether
Pathdreamer predictions can improve performance on the
VLN task [1]. We rank Pathdreamer generation results
using an instruction-trajectory compatibility model [22] to
assess which trajectory best matches the instruction. The
agent executes the first action from the top-ranked trajectory
before repeating the process, which improves performance.
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