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1. Introduction

Defining a reward function in Reinforcement Learning
(RL) is not always possible or very costly. For this reason,
there is a great interest in training agents in a task-agnostic
manner making use of intrinsic motivations and unsuper-
vised techniques [7, 6, 15, 2, 14, 3]. Due to the complexity
to learn useful behaviours in pixel-based domains, the results
obtained in RL are still far from the remarkable results ob-
tained in domains such as computer vision [5, 4] or natural
language processing [1, 12]. We hypothesize that RL agents
will also benefit from unsupervised pre-trainings with no
extrinsic rewards, analogously to how humans mostly learn,
especially in the early stages of life.

Our main contribution is the deployment of the Explore,
Discover and Learn (EDL) [3] paradigm for unsupervised
learning to the pixel and coordinate space (PiCoEDL). In
particular, our work focuses on the MineRL [9] environment,
where the observation of the agent is represented by: (a) its
spatial coordinates in the Minecraft virtual world, and (b) an
image from an egocentric viewpoint. Following the idea of
empowerment [10], our goal is to learn latent-conditioned
policies by maximizing the mutual information between
states and some latent variables, instead of sequences of ac-
tions [7]. This allows the agent to influence the environment
while discovering available skills.

2. From pixels and coordinates to skills

We formulate a Markov decision process (MDP) as
M = (S,A,P). S is the high-dimensional state space
(pixel images and coordinates), A refers to the set of actions
available in the environment and P defines the transition
probability p(st+1|st, a). We learn latent-conditioned poli-
cies π(a|s, z), where the latent z ∈ Z is a random variable.

Given the property of symmetry, the mutual information
(I) can be written using the Shannon Entropy (H) in two
ways:

I(S,Z) = H(Z)−H(Z|S) → reverse
= H(S)−H(S|Z) → forward

(1)

Maximizing the mutual information (MI) requires knowl-
edge of unknown distributions (p(s), p(s|z), p(z|s)). For the
former we study two cases: (a) Using expert trajectories, and
(b) Using the distribution induced by a random policy. A
comparison of both strategies can be found in Section 2.1,
for now we assume the latter case of p(s). We rely on varia-
tional inference techniques for estimating the mappings from
the states to the latent variables and backwards. These are
estimated from the rollouts induced by the random policy.
Finally, we also need to define a prior p(z) to sample from,
which in our case, following EDL [3] is a fixed uniform
categorical distribution.

If we proceed with the derivation of the forward form in
EDL [3], we can find that in our case the intrinsic objective
becomes a distance in the pixel space. Since we cannot
assume that it is representative of a meaningful distance
in the environment, we discard this approach. Instead, we
adopt the reverse form of the MI. We use the VQVAE [13]
model, that allows us to estimate the posterior p(z|s) with
the encoder qφ(z|s) by maximum likelihood on (s, z) tuples
and also contains a categorical bottleneck for p(z). Then,
our final objective becomes:

r(s, z) = qφ(z = k|s) =

{
1, if k = argminj ||ze(s)− ej ||
0, otherwise

(2)
ze(s) is the sum of the outputs of two encoders: (a) a 2D

convolutional encoder for the images, and (b) a multilayer
perceptron for the coordinates. Both have the same output
dimension that allows summing up the resulting embeddings.
Then in Equation 2, we find the index of the closest embed-
ding in the VQVAE codebook e. Only if this index matches
the sampled latent variable z that is conditioning the policy,
it will return a reward of 1. Despite the sparsity of rewards,
since we use a p(s) that is induced from a random policy, we
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Figure 1. a) Top-view of our Minecraft map. The caption below b) c) d) e) refers to the nature of the states (pixels, coordinates or both) and
the type of trajectories (expert or random). Each coloured point indicates the closest centroid to the encoded embedding.

know that these states are reachable and we will not suffer
from exploration problems. Also, there are other problems
due to multiple states rising positive rewards which could
lead to ambiguous objectives. This can be tackled using a
smoother reward function such as computing the distance in
the embedding state, but in our experiments we did not have
any problem by leveraging the previous reward.

In the following subsections we specify the implementa-
tion details of our approach.

2.1. Exploration and Skill Discovery

Firstly, we considered using expert trajectories to in-
duce the distribution over the states. We used the MineRL
dataset [8], which contains expert trajectories from different
Minecraft worlds. Using expert trajectories may seem prefer-
able since they contain human priors that give more weight
to those states that are meaningful for discovering useful
skills. However, Figure 1b shows that expert trajectories
from pixels discover fewer and sparser skills than the those
discovered by random exploration in our map, depicted in
Figure 1c. This suggests that while the skills discovered
by experts may be more generic as they were collected in
different worlds, they are not as useful for our particular map
as the skills discovered by a random policy. This hypothesis
is supported by Figure 2, where we show the reconstructed
images for each of the VQ-VAE codebook centroids. The
reconstructions belonging to the expert trajectories contain
scenarios that cannot be found in our Minecraft map.

In our study case, we aim to learn policies that treat the
latent variables as navigation-goals. For this purpose, Fig-
ure 1 shows complementary skills discovered from pixels
(Figure 1c) or coordinates (Figure 1d). We would like to
discover skills that take into account not only the visual
similarity but also the position relative to the initial state,
so we adopt a solution that considers the two types of state
representations (Figure 1e). This way our agent can distin-
guish between two visually identical mountains located at
two different positions in the map.

Figure 2. Top: images reconstructed from learned centroids using
expert trajectories. Bottom: images reconstructed from learned
centroids using pixels and coordinates from random trajectories.

Figure 3. Left: Observations in yellow are encoded to the code-
book embeddding z3. Right: Trajectories followed by the agent
conditioned by z3.

2.2. Skill-Learning

In the last stage of PiCoEDL, we leverage Equation 2,
derived from maximizing the mutual information between
states and latent variables to maximize the expected cumu-
lative reward. The latent codes discovered are now treated
as goal states in a navigation task. We utilize Rainbow [11]
algorithm to train our RL embodied agent. The input to the
network is composed of the concatenation of the embedded
observation with the latent embedding that is conditioning
the policy. For each episode, we sample uniformly from p(z)
to determine the conditioning latent.

While there are some policies that are correctly learned,
we find some others that do not achieve satisfactory re-
sults. We hypothesize that these are the latent codes that
encode smaller regions of the state space, and with further
tuning may achieve the desirable results. Figure 3 depicts the
trained policy conditioned with the third codebook. More
examples are available in our project site1.

1https://imatge-upc.github.io/PiCoEDL/
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