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1. Introduction
We tackle embodied visual navigation in a task-agnostic

set-up by putting the focus on the unsupervised discov-
ery of skills (or options [2]) that provide a good cov-
erage of states. Our approach intersects with empower-
ment [10]: we address the reward-free skill discovery and
learning tasks to discover what can be done in an envi-
ronment and how. For this reason, we adopt the existing
Explore, Discover and Learn (EDL) [1] paradigm, tested
only in toy example mazes, and extend it to pixel-based
state representations available for embodied AI agents.
The information-theoretic paradigm of EDL [1] aims to
learn latent-conditioned policies, namely skills π(a|s, z),
by maximizing the mutual information (MI) between the
inputs s and some latent variables z. Hence, EDL [1] con-
sists of unsupervised skill discovery and training of rein-
forcement learning (RL) agents without considering the ex-
istence of any extrinsic motivation or reward. We present
PixelEDL, an implementation of the EDL paradigm for the
pixel representations provided by the AI Habitat [11] and
MineRL [3] environments. In comparison with EDL, Pix-
elEDL involves self-supervised representation learning of
image observations for information-theoretic skill discov-
ery. Still, PixelEDL aims to maximize the MI between in-
puts and some latent variables and for that it consists of the
same three stages of EDL (explore, discover and learn). By
breaking down the RL end-to-end training pipeline into the
three stages, we also simplify the implicit difficulty in learn-
ing both representations and policies from a high dimen-
sional input space all at once [7].

Figure 1. Top-down views of the three considered environments:
(i) a custom ”toy example” Minecraft map, (ii) a Realistic
Minecraft map, and (iii) a Habitat apartment.

The results presented in this extended abstract are further
extended in our project site1.

2. Methodology
We assume an underlying Markov Decision Process

(MDP) without rewards: M = (S,A,P) where S is
the high-dimensional set of states (defined by image pix-
els). A is the action space and P = p(s|s, a) is the
transition function. Moreover, we define the objective of
PixelEDL as the maximization of the MI in equation (1),
which requires knowledge of the unknown distributions
p(s), p(s|z), p(z|s).

I(S,Z) = H(Z)−H(Z|S) → reverse
= H(S)−H(S|Z) → forward

(1)

2.1. Exploration

The first task to tackle in PixelEDL is exploration. With-
out any prior knowledge, a reasonable choice for discov-
ering state-covering skills is to define the distribution over
all states p(s) uniformly. However, training an exploration
policy to infer a uniform p(s) is not feasible in PixelEDL
since it deals with the high-dimensional pixel space. To
overcome this limitation we adopt a non-parametric estima-
tion of p(s) by sampling from a dataset of collected experi-
ence. Hence, in PixelEDL the goal of the exploration stage
is to collect a dataset of trajectories containing representa-
tive states that the learned skills should ultimately cover.
PixelEDL adopts a random exploration of the environment
through agents that perform random actions within a dis-
crete action space (i.e. move forward, turn left, turn right)
and collect the trajectories generated by the environment.
For our custom Minecraft map, random policies from agents
instantiated in the center of the map are capable of covering
a complete set of representative states of the environment
given a large number of episodes. In the realistic Minecraft
map the random agents do not cover as many representative
states as in the custom map but still provide enough cov-
erage of the state space. However, in order to obtain a set

1https://imatge-upc.github.io/PixelEDL/
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of representative states of the Habitat map we let the agents
start in random navigable points of the map at each episode.

2.2. Skill Discovery

The Discovery stage of EDL aims at finding the latent
representations z that will ultimately condition the agent
policies to learn the skills π(a|s, z). Hence, the goal of Pix-
elEDL in this stage is to model p(z|s) as a mapping of the
states to their representations and to model p(z) as a cate-
gorical distribution of meaningful representations.

Ideally, we aim to obtain representations of the image
observations that encode existing similarities and spatial re-
lations within the environment [6]. Furthermore, we aim
to find z that are representatives of a meaningful segmen-
tation of the state space. In this work the representations
z will be later used to condition a navigation task. Previ-
ous works [16] have reported the challenges of unsuper-
vised learning of representations from images that encode
valuable features for RL agents in a 3D environment. For
modelling p(z|s), we study the performance of two differ-
ent approaches: (i) a contrastive one, that uses a siamese
architecture and aims to project positive pairs of input im-
ages closer in an embedding space, and (ii) a reconstruc-
tion one, that use a Variational Autoencoder (VAE) [5] with
categorical classes, namely Vector Quantisation VAE (VQ-
VAE) [9], to train the model to reconstruct the observa-
tions. For the contrastive approach, we use the adaptation
to CURL [14] proposed by Stooke et al. [15], namely Aug-
mented Temporal Contrast (ATC). Compared to CURL, in
ATC the positive pairs of inputs consist of two image obser-
vations belonging to the same exploration trajectory. That
is, we train both ATC and VQ-VAE so that a positive pair
of inputs consists of two observations of the same trajectory
with a delay d ∼ N (µ, σ2). We experiment with µ = 15
and σ = 5. Hence, in both ATC and VQ-VAE we perform
a data augmentation in the temporal domain. Our experi-
ments indicate that the capabilities of both ATC and VQ-
VAE for modelling p(z|s) are promising and we have not
yet observed important differences to justify using one over
the other.

Figure 2. Self-Supervised representation learning and unsuper-
vised skill discovery pipeline.

After the visual representation learning, we model a cate-
gorical distribuiton p(z) by clustering the embedding space
of the representations. Yarats et. al [17] use a projection

of the embeddings onto the prototypes which define a ba-
sis of the embedding space to perform the cluster assign-
ments. However, in VQ-VAE, this clustering is implicit in
the model since the cluster centroids are actually the rep-
resentatives of the model’s codebook. Also, for ATC we
apply a K-means [8] clustering for modelling p(z) with the
cluster centroids. After modelling p(z) and p(z|s), we com-
plete the stages of representation learning and skill discov-
ery. Figure 2 summarises the aforementioned pipeline. We
provide more details in our project site.

2.3. Learning

Given a model of p(z), we make use of the formulation
of Universal Value Function Approximators (UVFA) [12]
to train a policy to maximize the MI (1) between the inputs
and z. That is, we exploit z as navigation goals or intrin-
sic objectives to learn the goal-conditioned skills: π(a|s, z).
Hence, we feed the concatenation of the encoded observa-
tion and z to the RL agents. Thus, at each step, the policy
predictions depend not only on the current agent state but
also on z. EDL [1] maximizes the forward form of the MI
(1). That is feasible in EDL because the technique is applied
to toy mazes where the states of the MDP are defined by 2D
coordinates. In this way, EDL models p(s|z) by variational
inference and maximize the MI by deriving a reward that
involves computing euclidean distances in the state space
of coordinates. However, as in PixelEDL we deal with the
pixel space, it is not coherent to match the euclidean dis-
tance in the image observation space with the distances in
the 3D environment. For this reason we make use of the re-
verse form of the MI (1) and we model p(z|s) with the en-
coder that learns latent representations from image observa-
tions. Finally, we craft a reward distribution that maximizes
the MI (1) between the inputs and the skills by taking into
account the distances in the latent space of the representa-
tions. Concretely, we assign a positive reward to an action a
that positions the agents in a state s only if the encoded im-
age observation is closest to the skill-conditioning z among
all z ∼ p(z). We use the baseline RL models provided by
both Habitat and MineRL for implementing the aforemen-
tioned training pipeline. These models are Proximal Policy
Optimization (PPO) [13] and Rainbow [4] respectively.

While PixelEDL is capable of learning some of the dis-
covered skills, specially in the custom Minecraft map, it
finds more difficulties in the realistic one and in Habitat.
We hypothesize that: (i) Rainbow struggles with the latent
codes z that encode similar regions of the realistic Minecraft
state space; (ii) further tuning of PPO could achieve better
results when learning the skills in Habitat, since we already
obtain high-quality discovery of these. We provide qualita-
tive results together with a demo video in our project site.
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