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Abstract

As an attempt towards assessing the robustness of em-
bodied navigation agents, we propose ROBUSTNAV, a
framework to quantify the performance of embodied nav-
igation agents when exposed to a wide variety of visual
– affecting RGB inputs – and dynamics – affecting transi-
tion dynamics – corruptions. Most recent efforts in visual
navigation have typically focused on generalizing to novel
target environments with similar appearance and dynam-
ics characteristics. With ROBUSTNAV, we find that some
standard embodied navigation agents significantly under-
perform (or fail) in the presence of visual or dynamics cor-
ruptions. We systematically analyze the kind of idiosyn-
crasies that emerge in the behavior of such agents when
operating under corruptions. Finally, for visual corrup-
tions in ROBUSTNAV, we show that while standard tech-
niques to improve robustness such as data-augmentation
and self-supervised adaptation offer some zero-shot resis-
tance and improvements in navigation performance, there
is still a long way to go in terms of recovering lost perfor-
mance relative to clean “non-corrupt” settings, warranting
more research in this direction. Our code is available at
https://github.com/allenai/robustnav.

1. Introduction
A longstanding goal of the artificial intelligence com-

munity has been to develop algorithms for embodied agents
that are capable of reasoning about rich perceptual infor-
mation and thereby accomplishing tasks by navigating in
and interacting with their environments. In addition to be-
ing able to exhibit these capabilities, it is equally important
that such embodied agents are able to do so in a robust and
generalizable manner.

A major challenge in Embodied AI is to ensure that
agents can generalize to environments with different ap-
pearance statistics and motion dynamics than the environ-
ment used for training those agents. For instance, an agent
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Figure 1. Visual Corruptions. Visual corruptions ROBUSTNAV
supports in the unseen target environments. Top-left shows a clean
RGB frame and rest show corrupted versions of the same. Defocus
Blur, Motion Blur, Spatter, Low lighting and Speckle Noise are
supported at 5 progressively increasing levels of severity.

that is trained to navigate in “sunny” weather should con-
tinue to operate in rain despite the drastic changes in the
appearance, and an agent that is trained to move on carpet
should decidedly navigate when on a hardwood floor de-
spite the discrepancy in friction. While a potential solution
may be to calibrate the agent for a specific target environ-
ment, it is not a scalable one since there can be enormous
varieties of unseen environments and situations. A more ro-
bust, efficient and scalable solution is to equip agents with
the ability to autonomously adapt to new situations by in-
teraction without having to train for every possible target
scenario. Despite the remarkable progress in Embodied AI,
especially in embodied navigation [14, 11, 12, 13, 3], most
efforts focus on generalizing trained agents to unseen envi-
ronments, but critically assume similar appearance and dy-
namics attributes across train and test environments.

As a first step towards assessing general purpose ro-
bustness of embodied agents, we propose ROBUSTNAV, a
framework to quantify the performance of embodied navi-
gation agents when exposed to a wide variety of common
visual (vis) and dynamics (dyn) corruptions – artifacts that
affect the egocentric RGB observations (see Fig. 1; akin
to [8] for object recognition) and transition dynamics (see
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Figure 2. Dynamics Corruptions. We show the kinds of dynam-
ics corruptions supported in ROBUSTNAV. Motion Bias (C &
S) are modeled to mimic friction. Motion Drift models a setting
where translation actions have a slight bias towards rotating right
(or left). In Motor Failure, the one of the rotation actions fail.
Fig. 2), respectively. We envision ROBUSTNAV as a testbed
for adapting agent behavior across different perception and
actuation properties. While assessing robustness to changes
(stochastic or otherwise) in environments has been investi-
gated in the robotics community [9, 4, 5, 6], the simulated
nature of ROBUSTNAV enables practitioners to explore ro-
bustness against a rich and very diverse set of changes,
while inheriting the advantages of working in simulation –
speed, safety, low cost and reproducibility.

ROBUSTNAV consists of two widely studied embodied
navigation tasks, Point-Goal Navigation (POINTNAV) [1]
and Object-Goal Navigation (OBJECTNAV) [2] – the tasks
of navigating to a goal-coordinate in a global reference
frame or an instance of a specified object, respectively. Fol-
lowing the standard protocol, agents learn using a set of
training scenes and are evaluated within a set of held out test
scenes, but differently, ROBUSTNAV test scenes are subject
to a variety of visual (see examples in Fig. 1) and dynamics
(see examples in Fig. 2) corruptions.

As zero shot adaptation to test time corruptions may be
out of reach for our current algorithms, we provide agents
with a fixed “calibration budget” (number of interactions)
within the target world for unsupervised adaptation. This
mimics a real-world analog where a shipped robot is al-
lowed to adapt to changes in the environment by execut-
ing a reasonable number of unsupervised interactions. Post
calibration, agents are evaluated on the two tasks in the cor-
rupted test environments using standard navigation metrics.

Our extensive analysis reveals that both POINTNAV and
OBJECTNAV agents experience significant degradation in
performance across the range of corruptions, particularly
when multiple corruptions are applied together (POINTNAV
results in Table. 1). We show that this degradation reduces
in the presence of a clean depth sensor suggesting the ad-

POINTNAV
RGB RGB-D

# Corruption ↓ V D SR ↑ SPL ↑ SR ↑ SPL ↑
1 Clean 98.82 83.13 98.54 84.60

2 Low Lighting X 94.36 75.15 99.45 84.97
3 Motion Blur X 95.72 73.37 99.36 85.36
4 Camera Crack X 82.07 63.83 95.72 81.21
5 Defocus Blur X 75.89 53.55 99.09 85.54
6 Speckle Noise X 67.42 48.57 98.73 84.66
7 Lower-FOV X 42.49 31.73 89.08 73.59
8 Spatter X 33.58 24.72 98.91 84.81

9 Motion Bias (C) X 92.81 77.83 93.36 79.46
10 Motion Bias (S) X 94.72 76.95 96.72 79.08
11 Motion Drift X 95.72 76.19 93.36 75.08
12 PyRobot [10] (ILQR) Mul. = 1.0 X 96.00 67.79 95.45 69.27
13 Motor Failure X 20.56 17.63 20.56 17.62

14 Defocus Blur + Motion Bias (S) X X 76.52 51.08 97.18 79.46
15 Speckle Noise + Motion Bias (S) X X 62.69 43.31 95.81 78.27
16 Spatter + Motion Bias (S) X X 33.30 23.33 95.81 78.85

17 Defocus Blur + Motion Drift X X 74.25 50.99 95.54 76.66
18 Speckle Noise + Motion Drift X X 64.42 44.73 94.36 75.23
19 Spatter + Motion Drift X X 32.94 23.44 95.45 76.61

Table 1. POINTNAV Performance. Degradation in task per-
formance of pretrained POINTNAV (trained for ∼ 75M frames)
agents when evaluated under vis and dyn corruptions present in
ROBUSTNAV. For vis corruptions with controllable severity lev-
els, we report results with severity set to 5 (worst). Rows are sorted
based on SPL values for RGB POINTNAV agents. Success and
SPL values are reported as percentages. (V = vis, D = dyn)
vantages of incorporating multiple sensing modalities to
improve robustness. We find that data augmentation and
self-supervised adaptation strategies (PAD [7]) offer some
zero-shot resistance and improvement over degraded per-
formance, but are unable to fully recover this gap in perfor-
mance. Interestingly, we also note that visual corruptions
affect embodied tasks differently from static tasks like ob-
ject recognition – suggesting that visual robustness should
be explored within an embodied task. Finally, we analyze
several interesting behaviors our agents exhibit in the pres-
ence of corruptions – such as increase in the number of col-
lisions and inability to terminate episodes successfully.

In summary, our contributions include: (1) We present
ROBUSTNAV– a framework for benchmarking and assess-
ing the robustness of embodied navigation agents to vi-
sual and dynamics corruptions. (2) Our findings show that
present day navigation agents trained in simulation under-
perform severely when evaluated in corrupt target environ-
ments. (3) We systematically analyze the kinds of mis-
takes embodied navigation agents make when operating un-
der such corruptions. (4) We find that although standard
data-augmentation techniques and self-supervised adapta-
tion strategies offer some improvement, much remains to
be done in terms of fully recovering lost performance.

ROBUSTNAV provides a fast framework to develop and
test robust embodied policies, before they can be deployed
onto real robots. While ROBUSTNAV currently supports
navigation heavy tasks, the supported corruptions can be
easily extended to more tasks, as they get popular within
the Embodied AI community.
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