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Abstract
This work presents a method to improve the efficiency

and robustness of the previous model-free Reinforcement
Learning (RL) algorithms for the task of object-target vi-
sual navigation. Despite achieving the state-of-the-art re-
sults, one of the major drawbacks of those approaches is
the lack of a forward model that informs the agent about
the potential consequences if its actions, e.g. being model-
free. In this work we take a step towards augmenting the
model-free methods with a forward model that is trained
along with the policy, using a replay buffer, and can predict
a successful future state of an episode in a challenging 3D
navigation environment. We develop a module that can pre-
dict a representation of a future state, from the beginning of
a navigation episode, if the episode were to be successful;
we call this ForeSIM module. ForeSIM is trained to imagine
a future latent state that leads to success. Therefore, during
navigation, the policy is able to take better actions leading
to two main advantages: first, in the absence of an object
detector, ForeSIM leads mainly to a more robust policy, e.g.
about 5% absolute improvement on success rate; second,
when combined with an off-the-shelf object detector to help
better distinguish the target object, ForeSIM leads to about
3% absolute improvement on success rate and about 2%
absolute improvement on Success weighted by inverse Path
Length (SPL), e.g. higher efficiency.

1. Introduction
Target-object visual navigation is a challenging problem

since the agent needs to learn how to avoid obstacles and
take actions by distinguishing similar but visually different
targets in a complex environment [1,8,10,13]. Furthermore,
there are typically multiple action sequences (i.e. trajecto-
ries) that could lead to a successful episode at each starting
state, let alone the trajectories that might fail. Learning to
select the right action at each time step to create a trajectory
that leads to the specified target is the primary challenge.

Explicitly incorporating the transition in the environment
for better prediction of the potential outcome of the actions,
hailed model-based RL, is also developed [4–7]. However,
model-based approaches are generally harder to train, espe-
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Figure 1. Enabling an agent to imagine states on the path to suc-
cess improves its ability to carry out complex tasks, particularly in
unseen environments. As opposed to the conventional approaches,
our success-aware agent takes actions not only based on the cur-
rent state, but also a prediction of a successful future, to achieve
its goal.

cially in a 3D rich environment, since every state transition
in the environment has to be accurately modelled.

To mitigate the above mentioned issues we propose our
Foresight Success IMaginator (ForeSIM). Intuitively, as
shown in Figure 1, ForeSIM is able to simulate a representa-
tion of a potential successful trajectory given the target and
the initial state (i.e. the egocentric RGB view of the envi-
ronment). ForeSIM provides the agent with foresight of a
future sub-goal state through which the agent is more likely
to successfully achieve its goal. By explicitly incorporating
the sub-goal information into the policy, the agent can take
better actions even when the target is not in the field of view
of it.

ForeSIM helps the agent in two main ways: first, it pro-
vides the agent with an imagined representation of the sub-
goal state that will help with successful task completion,
e.g. stopping at the right location; our empirical results in
the absence of an object detector support this claim; second,
it helps the agent to constantly remember the target state to
navigate to even if that state is out of the field of view of the
agent shortly, e.g. it improves the navigation efficiency.
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Figure 2. We augment actor-critic RL with our ForeSIM module. We alternate between training ForeSIM and the policy, sharing the same
state representation. We develop an attention mechanism to identify the sub-goal state that minimises the critic error (in hindsight) and
train our ForeSIM module to generate that state (in foresight).

2. Method
We present an overview of our navigation framework in

Figure 2. Our framework involves two main steps: first, we
consider learning to identify a sub-goal state through which
a navigation episode is successful. To that end, we develop
an attention mechanism to find the sub-goal in hindsight af-
ter an episode is executed [2]. We modify the value estima-
tion objective in actor-critic RL (A3C) [9] to learn to iden-
tify the sub-goal state, as the state the maximally correlates
with the successful goal state, as follows:

Vθ(st) ≈ Vθ(s?t ), s?t =

t∑
j=0

αjvω(sj) + st . (1)

Here, vω(sj) is a linear function of the input and αj is
the jth dimension of α, which is defined as follows:

α = softmax
(
qω(st)kω([s0 : st])

>
√
t+ 1

)
. (2)

Here, qω and kω are linear functions analogous to the query
and key in an attention mechanism [11] with s0:t the con-
catenation of the states up to time t. We denote all of our
sub-goal selection parameters by the set ω. Moreover, αj is
the correlation between state j and the current state t, and
its magnitude specifies the likelihood that state j is an im-
portant sub-goal to reach.

Next, we consider how to learn to generate the selected
sub-goal in foresight at the beginning of each episode.
To that end, we develop an algorithm that uses a replay
buffer of the selected sub-goal states in the past success-
ful episodes. The replay buffer, denoted by M is filled with
tuples of (s0,gτ , ŝτ ), the initial state, the embedding of the
target object gτ for episode τ and the sub-goal state repre-
sentation. We then devise the following objective to train
our ForeSIM module, fw, parameterised with w:

min
w

E(s0,gτ ,ŝτ )∼M

∣∣∣ŝt − fw([s0 : gτ ])
∣∣∣ (3)

where [ : ] denotes vector concatenation. For fw we use a
multi-layer Perceptron (MLP) with a bottleneck architec-

Method SPL SR SPL>5 SR>5
Without Object Detector

A3C+MAML [12] 16.15 ±0.5 40.86 ±1.2 13.91 ±0.5 28.70 ±1.5
A3C+MAML+ForeSIM 16.75 ±0.5 45.5 ±1.0 15.8 ±0.6 34.7 ±1.1

With Object Detector
A3C+ORG [3] 37.5 65.3 36.1 54.8
A3C+ORG+ForeSIM 39.41 ±0.3 68.0 ±0.6 36.85 ±0.4 56.11 ±0.8

Table 1. Quantitative comparison to the previous state-of-the-art
methods. SPL>5 and SR>5 show the metrics for episodes longer
than 5 time steps. Our method improves all four commonly used
evaluation metrics.

ture with the intuition that the structure of the sub-goal dis-
tribution lies in a lower dimensional space. Finally, we
integrate our sub-goal selection and ForeSIM module into
A3C [9] actor and critic objectives, as follows:

J ?π (at | st,θ) = − log π(at | st,gτ , Iτ ;θ)(rt+ (4)
γVθ(s

?
t+1)− Vθ(s?t )) + βHHt(π)

J ?V (st,θ) =
1

2
(Vθ(s

?
t )−R)2 (5)

where Iτ is the foresight imagination, Vθ is the state value
function approximation, H is the entropy with its weight
hyper-parameter β and R is the sum of the discounted re-
ward.

Our policy receives both the generated sub-goal and the
current state representation and maps them to actions.
3. Results

In Table 1, we quantitatively compare our method with
two prominent previous methods in AI2THOR [8] simula-
tor. First, we add ForeSIM to A3C+MAML [12] and we
show a significant improvement in success rate. ForeSIM
helps with identifying the target object without an object
detector and stopping at the right location. Second, we
add ForeSIM to A3C+ORG [3] and we improve both the
success rate and SPL. This shows more efficient navigation
even when an off-the-shelf object detector is used to stop at
the right location. We follow the exact same setup in both
methods [3, 12] for fair comparison.
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