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Abstract

In a nutshell robot simulators are fully developed soft-
ware systems that provide simulations as a substitute for
real-world activity. They are primarily used for training
modules of robot control programs, which are, after com-
pleting the learning process, deployed in real-world robots.
In contrast, simulation in (artificial) cognitive systems is a
core cognitive capability, which is assumed to provide a
“small-scale model of external reality and of its own pos-
sible actions within its head, it is able to try out various
alternatives, conclude which is the best of them, react to
future situations before they arise, utilise the knowledge of
past events in dealing with the present and future, and in
every way to react in a much fuller, safer, and more com-
petent manner to the emergencies which face it.” [8] This
means that simulation can be considered as an embodied,
online predictive modelling engine that enables robots to
contextualize vague task requests such as “bring me the
milk” into a concrete body motion that achieves the im-
plicit goal and avoids unwanted side effects. In this set-
ting a robot can run small-scale simulation and rendering
processes for different reasoning tasks all the time and can
continually compare simulation results with reality — it is
a promising Sim2Real2Sim setup that has the potential to
create much more powerful robot simulation engines. We
introduce URoboSim, a robot simulation framework that is
currently designed and developed with this vision in mind.

1. Simulation in engineering and cognition

In recent years the disruptive progress of virtual reality
simulation and rendering tools has been leveraged for real-
izing several high-performance robot simulators and simu-
lation environments [24, 2, 19, 6, 25, 26, 27, 22, 20, 17].
These simulators have been used, as substitutes for the real
world, to train and test the skills of robot agents [17, 1, 7, 3].
The learned and tested skills are then transferred to the real
robots.

The view of robot simulators as real-world substitutes

is very limited compared to the role that simulation and
prospection takes for cognition-enabled agency. Williams
[23] has proposed a framework that views the brain as
a probabilistic prospective modelling engine that can ab-
stractly project plans and alternatives, concretely simulate
the agent environment interactions, predict future situations
and how they look. Schacter et al.[21] define prospection
as the ability to represent what might happen in the future
and propose a taxonomy of prospective capabilities distin-
guishing their function as well as their level of abstrac-
tion. Another example is Hesslow’s simulation theory of
cognition[12, 13], which proposes that thinking is simu-
lated interaction with the environment. The role of build-
ing, maintaining, and using models that predict and explain
what is happening and include causal and intuitive physics
knowledge has also been stressed in the perspective article
“Building machines that learn and think like people”[16].

Figure 1. Belief-state (left) during action of real robot (right).

2. URoboSim
URoboSim is a simulation framework that is the work

horse of the cognitive architecture CRAM (Cognitive Robot
Abstract Machine) [5]. CRAM with the help of URoboSim
enables robot agents to accomplish underdetermined task
requests that require accomplishing fetch and place tasks
and other simple manipulation tasks such as pouring, wip-
ing. In each cycle of the perception-action loop the simula-
tion environment is updated by physically simulating the
body motions and their physical effects generated in the
respective cycle and correcting the current scene in URo-
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boSim to better match the captured camera image. Figure 1
shows how URoboSim is emulating the execution of a robot
plan in order to compute the belief state of the robot. URo-
boSim models robots using the data structures and service
libraries of the open-source robot middleware ROS, which
means that is functionally equivalent to the robot simulation
framework Gazebo. URoboSim includes models of differ-
ent robots and a kitchen laboratory environment and a small
drugstore. While the kitchen environment is handmade, the
drugstore environment can be created by autonomous robot
mapping given a grammar of how shelf system are config-
ured and realistic models of all products in the store.

3. Characteristics of URoboSim
Because simulation in URoboSim is a cognitive mecha-

nism rather than a substitute for the real world, URoboSim
has several unique characteristics:

Characteristic 1: The scene graph that URoboSim
is a rendering of a symbolic knowledge base. All enti-
ties and their parts that are depicted in a visualization of a
URoboSim simulation have a symbolic name and are ax-
iomatized in the ontology of the symbolic knowledge base,
which makes the URoboSim scenes machine-interpretable
as depicted in 2 [4, 11]. This means that one can ask open
queries on scenes such as all container objects that have a
volume larger than 0.5m3 and have a horizontal handle, or
highlight the handle of the container that contains the open
milk carton and display the articulation model of the con-
tainer door. This functionality is important for the genera-
tion of semantically segmented and annotated learning data
as well as automated skill testing.

Figure 2. Casting of the URoboSim scene graph as a virtual sym-
bolic knowledge base.

Characteristic 2: URoboSim can emulate the ongo-
ing activities of a robot agent. URoboSim cannot only
be operated as a stand-alone robot simulator but also as an
integrated component of the robot control system that can
emulate ongoing activities [18, 15]. In this mode the robot
maintains a scene graph as a belief state with respect to the

current state of the robot operating environment. To this
end, the robot can render the expected camera image, as de-
picted in 3, given its belief state and then adapting its belief
state in order to minimize the rendered and the real camera
image. In addition, the robot simulates its body motion in
its belief state. This way it can infer that a bowl falls to
the floor when it opens its gripper when holding it. Note
that action emulation forms a Sim2Real2Sim loop where
deviations of predicted and perceived states can be used to
improve the simulation capabilities.1

Figure 3. Rendering of the expected image based on the current
belief state.

Characteristic 3: URoboSim automatically perceives
events in simulated episodes and represents robot ma-
nipulation episodes in first-order time interval logic ac-
cording to the Flanagan action model. URoboSim (1) de-
tects force-dynamic events such as hand making contact to
the object to be picked up and object breaking contact with
supporting surface, (2) parses the events into hierarchical
action models with motion phases such as reaching, grasp-
ing, and lifting, and (3) recognizes, structures, and seman-
tically annotates actions such as picking up and placing ob-
jects. Event perception and event cognitionare key steps
for open question answering about simulated manipulation
episodes [10, 9].

4. Pointers to more information

A video showcasing the capabilities of URoboSim
can be found at http://ease-crc.org/link/
video-urobosim. URoboSim can simulate real robot
experiments described in [14]. Semantically structured
and annotated log files of URoboSim simulations of au-
tonomous robot table setting episodes can be retrieved
through the open web-based knowledge service openEASE
https://data.open-ease.org/QA?neem_id=
603127322113d53026863697.

1This is future research.
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