

I. Introduction

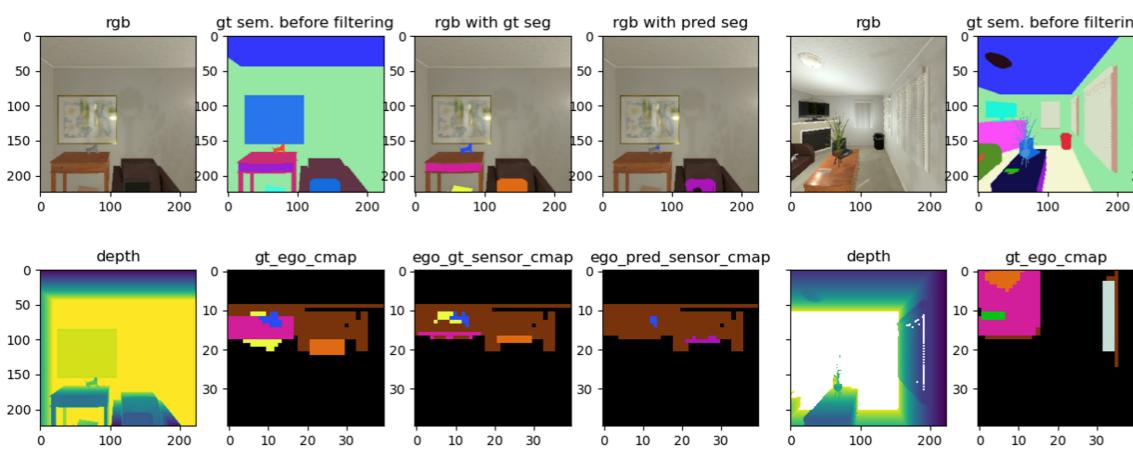
- Embodied AI
 - Learning of embodied physical interactions with surrounding environments
 - Tasks involving direct physical interaction with objects are drawing increasing attention
 - The visual room rearrangement task
- Motivation
- An end-to-end formulation Straightforward
 - Expensive cost of pure learning
- A three-phased modular architecture (TMA) Learning modules along with hand-crafted feature processing modules

Advantage of learning + reduced cost of learning

II. Semantic Mapping

- Semantic Map Construction
 - Map representation: K x M x M [1] An obstacle map, the explored area, the current agent location, the past agent locations, and C categories of semantics

Semantic segmentation: Swin Transformer [2]



Learning to Explore, Navigate and Interact for Visual Room Rearrangement Ue-Hwan Kim*, Young-Ho Kim*, Jin-Man Park, Hwan-Soo Choi, and Jong-Hwan Kim KAIST

III. TMA

• Phase 1: Exploration

• Long-term goal

Reinforcement learning module [3] (input) current semantic map \rightarrow (output) long-term goal Reward: newly explored area

• Short-term goal:

Planning module (knowledge-base) (input) long-term goal \rightarrow (output) sequence of actions The shortest path from the current location to the longterm goal

• Phase 2: Inspection

- Identical structure as Phase 1
- Long-term goal

Reinforcement learning module [3] (input) current semantic map + map from phase 1

• Phase 3: Rearrangement

Change detection

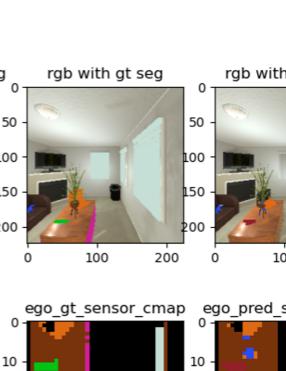
Changes: location and state of objects Distance metric: class and size similarities $d = w_{\text{class}} \cdot s_{\text{class}} + w_{\text{class}} \cdot s_{\text{size}}$

• Planning

The order of rearranging each object which is optimal in respect of time complexity Selecting one order from N! permutations of orders (N < 5)

Rearrangement

Rearrange each object step by step A* planner \rightarrow sequence of actions



0 10 20 30



0 10 20 30

IV. Experiment

- Settings
 - Al2-THOR Rearrangement Challenge 2-Phase track: walkthrough and un-shuffle phases 6,000 unique rearrangement scenarios

 - respectively)
 - Metrics and results

Split	100. Success Rate	100.%Fixed Strict	%E	% Misplaced
Train	0.5	1.0	1.01	1.00
Val.	0.0	0.9	1.00	1.00
Test	0.1	0.6	1.01	1.01

- Contribution
 - A three-phased modular architecture (TMA) for visual room rearrangement

room environment planning

learning." ECCV, 2020. shifted windows." arXiv, 2021.

(4,000/1,000/1,000 for train, validation and test,

Success rate, % Fixed Strict, % Energy Remaining and % Misplaced for each split of dataset

V. Conclusion

- Taking advantages of deep learning in understanding of
- Ensuring robustness of long-horizon decision making via

References

- [1] Chaplot, Devendra Singh, et al. "Semantic curiosity for active visual
- [2] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using
- [3] John Schulman, et al. "Proximal policy optimization algorithms." arXiv, 2017