

Introduction:

- Object-target visual navigation task:
- Given an object name perform a sequence of actions to find an instance of a given object and navigate towards it, using visual inputs only

Target: Toaster I can imagine if I reach the **sub-goal** I may find

- > Challenges:
- Efficiently explore to localise the object
- Plan (implicitly) the path towards the object
- Navigate while avoiding obstacles
- Select the shortest set of actions (e.g. trajectory) among many possible
- Previous state-of-the-art model-free RL:
- Map visual representations directly to actions
- Learn the representation and the policy, that addresses the above challenges, in an end-to-end manner
- Model-based RL:
- Can look ahead before acting via explicitly modelling the state transitions
- So far limited to only toy environments such as Atari
- Challenging to model every state transition in complex 3D environment
- Our approach: <u>Foresight Success</u> <u>IMaginator</u> (ForeSIM)

Method Overview:

- > We introduce foresight of a successful (sub-) goal state into action selection
- Our method has three main parts:
- Hindsight sub-goal selection
- Training sub-goal generator module along with RL
- Foresight sub-goal generation and action selection
- We build our framework upon A3C (actor-critic) RL algorithm

Success-Aware Visual Navigation Agent

Mahdi Kazemi Moghaddam, Ehsan Abbasnejad, Qi Wu, Javen Qinfeng Shi and Anton Van Den Hengel Australian Institute for Machine Learning, The University of Adelaide

Hindsight Sub-Goal Selection:

> We modify state-value function and use multi-head attention to learn to select (sub-) goal:

> $V_{\theta}(\mathbf{s}_t) \approx V_{\theta}(\mathbf{s}_t^{\star}),$ $\mathbf{s}_t^{\star} =$

$$\boldsymbol{\alpha} = \operatorname{softmax} \left(\frac{q_{\boldsymbol{\omega}}(\mathbf{s}_t) k_{\boldsymbol{\omega}}([\mathbf{s}_0 : \mathbf{s}_t])^{\top}}{\sqrt{t+1}} \right)$$

 $\succ v_{\omega}(s_i)$ is a linear function of the input, α_i is the j-th dimension of α the set of sub-goal weights, q_{ω} and k_{ω} are linear functions analogous to query and key in an attention mechanism

Training Sub-Goal Generator:

 \succ We add a replay buffer to alternate between training the policy and our sub-goal generator; we use the following objective to train our sub-goal generator:

 $\min_{\mathbf{W}} \quad \mathbb{E}_{(\mathbf{s}_0, \mathbf{g}_\tau, \hat{\mathbf{s}}_\tau) \sim M} \quad |\hat{\mathbf{s}}_t - \mathbf{s}_\tau| \leq 1$

Overview of our framework below:

$$\sum_{j=0}^{t} \alpha_j v_{\boldsymbol{\omega}}(\mathbf{s}_j) + \mathbf{s}_t \,.$$

-
$$f_{\mathbf{w}}([\mathbf{s}_0:\mathbf{g}_{\tau}])$$

Sub-Goal Selection Results:

Navigation Results:

- AI2THOR simulator
- weighted by Path Length (SPL)

Method	SPL	SR	SPL>5	SR>5
Without Object Detector				
A3C+MAML	16.15 ± 0.5	40.86 ± 1.2	13.91 ± 0.5	28.70 ± 1.5
A3C+MAML+ForeSIM	16.75 ±0.5	45.5 ±1.0	15.8 ±0.6	34.7 ±1.1
With Object Detector				
A3C+ORG	37.5	65.3	36.1	54.8
A3C+ORG+ForeSIM	39.41 ±0.3	68.0 ±0.6	36.85 ±0.4	56.11 ±0.8

Below are some examples of episodes and the selected sub-goal state (episodes are temporally sub-sampled for visualisation)

> We compare our method against multiple different baselines in

Our method improves both the robustness and efficiency of baselines, measured using Success Rate (SR) and Success